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Classification of possible finite-time singularities by functional renormalization
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Starting from a representation of the early time evolution of a dynamical system in terms of the polynomial
expression of some observablef(t) as a function of the time variable in some interval 0<t<T, we investigate
how to extrapolate/forecast in some optimal stability sense the future evolution off(t) for time t.T. Using
the functional renormalization of Yukalov and Gluzman, we offer a general classification of the possible
regimes that can be defined based on the sole knowledge of the coefficients of a second-order polynomial
representation of the dynamics. In particular, we investigate the conditions for the occurrence of finite-time
singularities from the structure of the time series, and quantify the critical time and the functional nature of the
singularity when present. We also describe the regimes when a smooth extremum replaces the singularity and
determine its position and amplitude. This extends previous works by~1! quantifying the stability of the
functional renormalization method more accurately,~2! introducing more global constraints in terms of mo-
ments, and~3! going beyond the ‘‘mean-field’’ approximation.
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I. INTRODUCTION

Finite-time singularities in the dynamical equations us
to describe natural systems are not always pathologies
should be thrown away or ignored, but may often bet
important useful information on the characteristic propert
of the real system. Actually, spontaneous singularities in
dinary and partial differential equations are quite comm
and have been found in many well-established models
natural systems, either at special points in space such a
the Euler equations of inviscid fluids@1,2#, in the surface
curvature on the free surface of a conducting fluid in
electric field@3#, in vortex collapse of systems of point vo
tices @4#, in the equations of general relativity coupled to
mass field leading to the formation of black holes@5#, in
models of micro-organisms aggregating to form fruiting bo
ies @6#, or in the more prosaic rotating coin~Euler’s disk!
@7,8#. Some more complex examples are models of rupt
and material failure@9–11#, earthquakes@12,13# and stock
market crashes@14,15#.

In a recent work@16#, we have developed theoretical fo
mulas for the prediction of the singular time of system
which area priori known to exhibit a critical behavior, base
solely on the knowledge of the early time evolution of
observable. From the parametrization of such early time e
lution in terms of a low-order polynomial of the time var
able, the functional renormalization approach introduced
Yukalov and Gluzman allows one to transform this polyn
mial into a function that is asymptotically a power law. Th
value of the critical timetc , conditionedon the assumption
that tc exists, can then be determined from the knowledge
the coefficients of the polynomials. Reference@16# has tested
with success this prediction scheme on a specific exam
and showed that this approach gives more precise and
able predictions than through the use of the exact real po
law model. This is a rather surprising and paradoxical ob
vation in contradiction with common wisdom according
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which the best and most reliable prediction should be
tained from the use of the exact underlying model of t
dynamical behavior@17#. The reason why this is not alway
true is that our method has shown that approximate solut
can be more stable and more reliable when devised so a
maximize the criterion of stability with respect to perturb
tions in the functional space@16#.

Here, we extend this work by offering a general class
cation of the possible regimes that can be defined base
the sole knowledge of the coefficients of the polynomial e
pansion of some observable as a function of the time v
able. We mostly restrict our analysis to second-order poly
mials. As a consequence, the classification can be organ
in a unique way in terms of the single signed Froude para
eter, ratio of the square of the velocity to the acceleration

Let us assume that the dynamical behavior of a system
sampled to obtain a time seriesf(t) in the interval 0<t
<T. The question we address in this work is how
extrapolate/forecast in some optimal sense the future ev
tion of f(t) for time t.T. Beyond a simple extrapolation
we ask whether it is possible to detect the germs of a fin
time singularity from the structure of the time series, a
quantify the critical time and the functional nature of th
singularity when present. We also aim at classifying the
gimes when a smooth extremum replaces the singularity
at determining its position and amplitude.

We shall work in the framework of the functional reno
malization method, which constructs the extrapolation fot
.T from a resummation of the time series represented b
simple polynomial expansion in powers of timet, wheret is
counted from the beginning of the recorded time series.

II. SUMMARY OF THE FUNCTIONAL
RENORMALIZATION APPROACH TO EXTRAPOLATION

OF TIMES SERIES

The mathematical foundation of the functional renorm
ization approach used here can be found in earlier publ
©2002 The American Physical Society34-1
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tions @18–30#, which we summarize briefly. Let perturbatio
theory ~or some fitting procedure! give for the time series
f(t) the succession of nonrandom approximationsfn(t)
wheren50,1,2, . . . enumerates the order of the increasing
precise approximations. The case of a polynomial expan
will be discussed below,

fn~ t !5 (
k50

n

akt
k, n50,1,2,3, . . . . ~1!

This expansion~1! is, in principle, defined fort sufficiently
small and based on information about the time series u
the timeT. The expansion may have no meaning if continu
straightforwardly to the region of finitet.T. The problem of
reconstructing the value of the function in some distant m
ment of time from the knowledge of its asymptotic expa
sion as t→0 is called a renormalization or resummatio
problem in theoretical physics. An analytical tool for the s
lution of this problem, called algebraic self-similar renorm
ization, has been developed recently@18–30# of which we
summarize the salient points useful for the present work

It is convenient to remove the constant term and cons
the time seriesp(t)[f(t)2f0 represented by the sequen
of polynomial approximationspi(t),i 51,2, . . . ,n,

p1~ t !5a1t, p2~ t !5p1~ t !1a2t2, . . . ,

pn~ t !5pn21~ t !1antn. ~2!

The algebraic self-similar renormalization starts by apply
to the approximations~2! a simple algebraic multiplication
thus defining a new sequence,Pi(t,s)5tspi(t), i
51,2, . . . ,n, with s>0. This transformation increases th
powers of the approximation sequences~1! and ~2!. This
formal manipulation effectively increases the order of t
expansion and provides a trick to effectively taking into co
sideration more points from the system trajectory. In the fi
part of the paper, we use the strongest form of this trans
mation corresponding to formally taking the limits→`.
This will be shown to provide a representation of the ren
malized function as an embedded set of exponentials as
ated with a singularityf;(tc2t)z, with critical exponentz
imposed to have an absolute value equal to 1. This limit
thus be considered as analogous to a ‘‘mean-field’’ reg
with the mean-field value of the critical exponentz521.
This can, for instance, represent the exponent of the der
tive of a quantity exhibiting a weak logarithmic divergenc
In the second part of the paper, we shall relax this limit a
determine bothtc and the indexz self-consistently.

The second step consists in considering the sequenc
transformed approximationsPi(t,s), as a dynamical system
in the discrete ‘‘order time’’ equal to the orderi
50,1, . . . ,n21 of the approximation. In order to keep th
information on the system evolution with the real timet, it is
convenient to introduce a new variablew and define the so
called expansion functiont(w,s) from the equationP1(t,s)
5a1t11s5w, which gives t(w,s)5(w/a1)1/(11s). We then
construct the discrete flow in the space of approximati
indexed by the ‘‘order time’’ as
01613
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yi~w,s![Pi„t~w,s!,s…. ~3!

One can then write the equation of evolution in the space
approximations as a function of the discrete ‘‘order time’’
the form of the functional self-similarity relation

yi 1p~w,s!5yi„yp~w,s!,s…. ~4!

Expression~4! provides the necessary condition for the se
consistency of the cascade of discrete approximations
ensures the convergence ofPi ’s. Expression~4! is nothing
but the application of the Caccioppoli-Banach principle f
the existence of a stable fixed point~see, for instance, Chap
XVI of Ref. @31#!.

At this stage, the efficiency of the algebraic transform
tion can be checked by analyzing its stability. This is do
for the sequence ofPi(t,s)’s by calculating the so-called
local multipliers~essentially proportional to the exponenti
of Lyapunov exponents!

mi~ t,s![F]yi~w,s!

]w G
w5P1(t,s)

. ~5!

When all umi(t,s)u,1, the convergence of the sequencePi
is guaranteed. To implement concretely the calculations,
use the integral form of the self-similarity relation~4!

E
Pi 21

Pi* dw

v i~w,s!
5t, ~6!

where the cascade velocity isv i(w,s)5yi(w,s)2yi 21(w,s)
and t is the minimal number of steps of the approximati
procedure needed to reach the fixed pointPi* (t,s) of the
approximation cascade. It is possible to findPi* (t,s) explic-
itly and to perform an inverse algebraic transform af
which the limits→` is to be taken. This completes the fir
loop of the self-similar renormalization. This procedure c
be repeated as many times as it is necessary to renorm
all polynomials that appear at the preceding steps. This is
main idea of the self-similar bootstrap@22#.

Completing this program, we come to the following s
quence of self-similar exponential approximants:

pj* ~ t,t1 ,t2 , . . . ,t j 21!

5a1texpFa2

a1
tt1•••expS aj

aj 21
t j 21t D G ,

j 52,3, . . . ,n ~7!

and

f j* ~ t,t1 ,t2 , . . . ,t j 21!5pj* ~ t,t1 ,t2, . . . ,t j 21!1a0 .
~8!

Explicitly, for the three first orders, we obtain

f2* ~ t,t1!5a1t expS a2

a1
tt1D1a0 , ~9!
4-2
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f3* ~ t,t1 ,t2!5a1t expFa2

a1
tt1 expS a3

a2
tt2D G1a0 , ~10!

f4* ~ t,t1 ,t2 ,t3!5a1t expH a2

a1
tt1 expFa3

a2
tt2 expS a4

a3
tt3D G J

1a0 . ~11!

Compared to previous works@18–30#, we introduce the fol-
lowing innovation to improve on the selection of the stab
extrapolations~or scenarios!. In order to check whether th
sequence off j* (t,t1 ,t2 , . . . ,t j 21) really converges, in ad
dition to calculating the multipliersmi(t,s) defined by Eq.
~5!, we analyze the multipliersM j (t,t1 ,t2 , . . . ,t j 21) cor-
responding specifically tof j* (t,t1 ,t2 , . . . ,t j 21). For this,
we construct again an approximation cascade as desc
above and define

M j~ t,t1 ,t2 , . . . ,t j 21!

[F]pj* ~w,t1 ,t2 , . . . ,t j 21!

]w G
w5P1(t,0)

. ~12!

Such a definition of multipliers allows us to compare t
convergence of the expansion and of the renormalized
pansion, making clear the improvements that can be
pecteda priori from the technique. If the values ofM j are
systematically smaller than the correspondingmj in the re-
gion of t<T and the overall convergence properties are
proved, one can expect that the renormalized express
will work better than the original expansion att.T.

The final step consists in determining the control para
eterst1 ,t2 , . . . ,t j 21, by expandingf j* (t,t1 ,t2 , . . . ,t j 21)
in the vicinity of t50, and requiring that this expansio
agrees term by term with the initial onef j (t) given by Eq.
~1!. This corresponds to imposing the condition of ‘‘accura
through order,’’ which ensures that the approximants prov
a systematic approximation scheme: if the indexj is in-
creased, the accuracy of the approximant to the expansio
the vicinity of the expansion pointt50 also increases. Thi
standard property is required in the construction, for
stance, of the method of Pade´ approximations@36# of the
expansion~1!.

The accuracy-through-order relationship, which holds
the fn* (t) approximant, means thatf(t)2fn* (t)
.O(t11n), t→0. Technically, in order to obtain the co
responding control parameters, we expand the approxim
near the origint→0 and equate the coefficients of the e
pansion to the correspponding coefficients of the polynom
expression~1!. For example, forn52 andn53, in the cases
of the two simplest approximants, we obtain ast→0,

f2* ~ t,t1!.a01a1t1a2t1t21O~ t3!, ~13!

f3* ~ t,t1 ,t2!.a01a1t1a2t1t21
t1~2a3a1t21a2

2t1!

2a1

1O~ t4!, ~14!
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and we easily find thatt151 andt2512a2
2/(2a1a3).

The problem of finding the control parameters is not t
complicated, since we are dealing formally with a nonline
but rather simple algebraic systems fort ’s, i.e., the knowl-
edge of the lowest-ordert ’s automatically gives us the ex
pression for thet in the next order. Using the anlytical pack
ageMATHCAD 8, we have performed calculations up to th
tenth order of the perturbative expansion, without encoun
ing any serious diffuculties, except for quite lengthy analy
cal expressions. However, for very large ordersj, some spe-
cial procedure, possibly combining numerical and analyti
approaches should be developed.

For eachj, we obtainj 21 self-similar approximants for
the sought function~where all control parameterst are now
known functions of the parametersa, with t1[1)

f j 1* ~ t,1,1, . . . ,1!,

f j 2* ~ t,1,t2,1, . . . ,1!, ~15!

f j j 21* ~ t,1,t2 , . . . ,t j 21!, ~16!

which differ according to the number of control function
being used. We can now construct a table of self-sim
approximants, varying bothj and the number of controls
Accordingly, we can define the table of multipliers, varyin
both j and the number of controls. For instance, forj 54, we
have the following table of approximations:

f21* ~ t !5f j* ~ t,1!,

f31* ~ t !5f3* ~ t,1,1!, f32* ~ t !5f3* ~ t,1,t2,!,

f41* ~ t !5f4* ~ t,1,1,1!, f42* ~ t !5f4* ~ t,1,t2,1!,

f43* ~ t !5f4* ~ t,1,t2 ,t3!.

For all approximants other thanwn,n21* (t), the accuracy-
through-order relationship holds in a relaxed form, e.
f(t)2fnn22* (t).O(tn), t→0. In this case, we procee
as described above but set the highest-order control pa
eter equal to 1, while the other control parameters are de
mined from the expansion.

We stress that suppressing~allowing! an error in the limit
of t→0 does not necessarily mean that the error will
minimized~increased! for the sought ‘‘nonsmall’’ values oft.
Sometimes, allowing a larger but still rather small error
vanishingly smallt ’s may help in decreasing the error in th
critical region, since the trajectory described by the cor
sponding approximant may become more stable. The app
imant that respects the standard form of the accura
through-order relationship appears to be the best in
‘‘cosine’’ example presented below. But this is not necess
ily the general case, as is demonstrated by the other
amples also discussed below.

In order to select the scenarios for the extrapolation to
future from the initial time series, one needs to examine b
the properties of convergence of the sequences of multip
M, and of approximantsf* . The best scenario is the one th
4-3
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exhibits the best simultaneous convergence of both
quences. The resulting limiting fixed point read from t
table of approximants should then be taken for the sou
extrapolation function. If there are more than one limiti
points, the sought function should be constructed by tak
their average with weights inversely proportional to the m
tipliers ~see Ref.@30#!. We now illustrate this general meth
odology on specific examples for which a finite-time sing
larity might exist.

III. CLASSIFICATION OF SINGULAR AND
NONSINGULAR BEHAVIORS BASED ON

SECOND-ORDER EXPANSIONS

A. Definitions

Let us now consider the simplest nontrivial case allow
for the possible existence of a finite-time singularity, name
a second-order polynomial representation

f2~ t !.11a1t1a2t2 ~ t→0! ~17!

of the initial time series. In the language of Ref.@32#, a1 is
the velocity and 2a2 is the acceleration. The relative influ
ence of the velocity and acceleration is quantified by
so-called Froude number@32# defined by

Fd[
a1

2

a2
. ~18!

Working with the ‘‘direct’’ series~17!, the program described
in the preceding section provides the sought observa
which we nameF2* (t), equal to the resummed approximan

F2* ~ t !5f21* ~ t !511a1t expFa2

a1
t G . ~19!

We will also study, when necessary, the inverse funct
f2I(t) of f2(t),

f2I~ t !51/f2~ t !512a1t1~2a21a1
2!t21•••[11b1t

1b2t21•••. ~20!

The corresponding Froude numberFI is

FI[
b1

2

b2
5

a1
2

a1
22a2

5
Fd

Fd21 S Fd5
FI

FI21D . ~21!

In cases when better convergence can be achieved by w
ing with the ‘‘inverse’’ series~20!, the observableF2* (t) will
be expressed through the approximant corresponding to
inverse series as follows:

F2* ~ t !5@f21I* ~ t !#215S 11b1t expFb2

b1
t G D 21

. ~22!

The convergence of our procedure is checked by estim
ing the value of the multiplier
01613
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M21~ t !5S 11
a2

a1
t DexpS a2

a1
t D . ~23!

The same expression gives the multiplier for the invers
function by changing all the coefficientsai ’s into bi ’s, where
the bi ’s are related to theai ’s via expression~20!.

B. Negative velocitya1Ë0 „downward trend…

1. Negative acceleration a2Ë0

Working with positive observables, this case correspo
to the possibility that the observable vanishes in finite tim
This zero-crossing occurs attc21 given by

11FdZd exp@Zd#50, ~24!

where Zd5(a2 /a1)tc21. The corresponding multiplier
M21(tc21) is larger than 1, signaling a possible problem w
the convergence of the functional renormalization meth
This may signal an instability in the time dynamics of th
time series close to the zero-crossing time.

2. Moderate positive acceleration 0Ëa2Ëa1
2Õe

The observable goes again to zero in finite time. The ti
tc21 at which the observable vanishes is given again by
~24!. The corresponding multiplierM1(tc21) is now less than
1, signaling a stable scenario.

3. Strong positive acceleration a1
2ÕeËa2

The acceleration is sufficiently positive to counterbalan
the negative trend and the observable goes through a m
mum before rebounding upward. The timetmin at which the
minimum Fmin* 512Fd /e is reached is given by

tmin52
a1

a2
. ~25!

This is a very stable situation since the multiplier is zero
the minimum. Our analysis suggests that the extrapolatio
the future is the most credible for this situation in the dow
ward trend case.

C. Positive velocitya1Ì0 „upward trend…

1. Negative acceleration: a2Ë0

The observable increases up to a maximumFmax* 51
2Fd /e and then decreases beyond it. The timetmax of the
maximum is given by

tmax52
a1

a2
.

This is a very stable situation since the multiplierM21 is less
than 1 for arbitrary timet and is zero at the maximum.

2. Positive acceleration

This case requires the inversion of the time series, si
the multipliers of the direct series are always larger than
4-4
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the expansion is not convergent and does not supply
information on the real-axis singularities. The inversi
maps these two cases on the cases previously consid
with multipliers smaller than 1. In addition, the correspon
ing series has alternating signs, suggesting that a finite-
singularity is indeed present.

3. Moderate positive acceleration: 0Ëa2Ë(eÀ1)Õea1
2

The observable increases up to a maximum and then
creases beyond it. The timetmax of the maximum is given by

tmax52
b1

b2
5

a1

a1
22a2

, ~26!

and the value at the maximum is

Fmax5S 12
FI

e D 21

. ~27!

This solution is very stable and thus very credible as
multiplier for f21I* (t) is always smaller than 1 and vanish
at the maximum. The original function is obtained by t
inversionF2* (t)5@f21I* (t)#21 @see also Eq.~20!#.

4. Large positive acceleration: (eÀ1)Õea1
2Ëa2 or FdËeÕ(eÀ1)

There is an upward finite-time singularity attc21 given by
the zero of the inverted renormalized expansion, i.e., by
solution of

f21I* ~ tc21!511FiZi exp@Zi #50, ~28!

where Zi5tc21(a22a1
2)/a1. The multiplier for f21I* (t) is

smaller than 1, signaling the convergence of the theoret
procedure for the inverse functions. Recall again that, in
der to return to the original function, the inversionF2* (t)
5@f21I* (t)#21 should be performed, leading to a divergen
of the original observable at the point where its inve
crosses zero.

D. Example

Let us consider a function with known singular behav
and compare the results obtained by means of self-sim
approximations with the exact values. We consider the fu
tion 1/cos(t) which was found@33# to describe the time evo
lution of the crack length of a self-consistent model of da
age and used@16# for prediction tests. Starting fromt50, the
function 1/cos(t) possesses a singularity att5p/2'1.5708,
and its expansion up to second order in powers oft2 reads

f2~ t !.111/2t215/24t41•••. ~29!

Note that, since 1/cos(t) is an even function, the relevan
variable for the expansion is indeedt2 and our previous clas
sification must be applied to the expansion~29! up to second
order in t2 ~i.e., to fourth-ordert4).

The corresponding Froude number isFd51.2 and obeys
the condition 1,Fd,e/(e21), i.e., the preceding sectio
shows that one can anticipate a finite-time singularity, o
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on the basis of the quadratic polynomial expansion. The
pansion of the inverse off2(t) reads

f2I~ t !.121/2t211/24t41•••. ~30!

As expected from our previous analysis in terms of t
stability of the renormalization flow quantified by the mult
pliers, the position of the critical time is better estimat
from the zero off21I* (tc21)50, which givestc2151.566 45,
compared to the valuet2051.592 45 suggested from the con
dition f20I(t20)50. This last valuet20 is nothing but the
prediction of the critical time from the ‘‘bare’’ polynomia
expansion. We refer to Eq.~16! for the definition off21I* (t)
and f20I(t). This shows that using a control paramet
which ensures that the renormalized expansion retrieves
polynomial expansion, improves the prediction of the critic
time.

IV. ILLUSTRATION OF THE SELECTION OF SCENARIOS
BY THE CONVERGENCE OF HIGHER-ORDER

APPROXIMANTS

We now exploit the previous example of the functio
1/cos(t) described in Sec. III D to illustrate how the conce
of convergence of the approximants developed in Sec. II
be used for an improved determination of the singularity.
we pointed out in Sec. II, the approximant that respects
standard form of the accuracy-through-order relationship
pears to be the best in the ‘‘cosine’’ example. In this secti
we also present two other models in which this is not
case, suggesting the usefulness of our procedure based o
minimization of multipliers.

A. The cosine model

Higher-order expansions of the inverse of the functi
1/cos(t) are given by

f3I~ t !.f2I~ t !21/720t61 . . . ~b3521/720! ~31!

and

f4I~ t !.f3I~ t !11/40320t81 . . . ~b451/403 20!.
~32!

The corresponding higher-order approximants are

F3* ~ t !5~f3I* ~ t !!215H 11b1t2 expFb2

b1
t2expS b3

b2
t2t2D G J 21

,

~33!

with

t2512
b2

2

2b1b3
, ~34!

and
4-5



ap
-

ith
tio
on
a
ve
e

q.

ly-

d

f
-

m-
for
a
im-
rmi-

t

hip

g.,

-

ing

of

s
e

S. GLUZMAN AND D. SORNETTE PHYSICAL REVIEW E66, 016134 ~2002!
F4* ~ t !5@f4I* ~ t !#21

5S 11b1t2 expH b2

b1
t2expFb3

b2
t2t2

3expS b4

b3
t3t2D G J D 21

, ~35!

with

t352
b3

12b1b2b4~b2
222b1b3!

~24b1
2b4b215b2

4212b1
2b3

2

212b1b3b2
2!. ~36!

As explained in Sec. II, the control parameterst2 andt3 are
determined from the condition that the expansion of the
proximants at smallt coincide with the perturbative expres
sion of the initial polynomial representation.

For each approximant of a given different order and w
a given number of control parameters, we obtain a predic
for the position of the singularity obtained from the conditi
of zero crossing of the inverse approximant. Let us comp
these values between them and with the critical time deri
from the corresponding initial polynomial fit. We find th
following results:

tc2151.566 45,

tc3151.551 34, tc3251.570 67,

tc4151.551 93, tc4251.570 48, tc4351.570 79,

corresponding to the following multipliers defined by E
~12!:

M21~ tc21!50.6484,

M31~ tc31!50.689 55, M32~ tc32!50.637 08,

M41~ tc41!50.687 43, M42~ tc42!50.637 72,

M43~ tc43!50.636 63.

The valuestc21, tc31, tc32, tc41, tc42, andtc43 should be
compared with the values determined from the ‘‘bare’’ po
nomials

t2051.592 45, t3051.569 91, t4051.570 82.

The convergence of this last sequence can be analyze
looking at the corresponding sequence of multipliersmi(t,0)
defined by Eq.~5!,

m2~ t02!50.577 35, m3~ t03!50.639 85,

m4~ t04!50.636 51.

Overall these results show indeed a good convergence
tc41,tc42 andtc43 by increasing the number of control param
eters and along the diagonaltc21,tc32,tc43 by increasing si-
01613
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n

re
d

by
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multaneously both the order of the polynomial and the nu
ber of control parameters. The same observation holds
the multipliersM. In contrast, the bare polynomials give
slower nonmonotonous convergence. This confirms the
provement brought by our scheme to obtain a better dete
nation of the critical timetc .

We note also that the best estimatetc51.570 78 obtained
from the method of Pade´ approximant is inferior to our bes
estimate.

B. Examples where relaxing the accuracy-through-order
relation may improve the performance of the approximants

As we discussed, the accuracy-through-order relations
holds for the approximantfnn21* (t), meaning simply that

f~ t !2fnn21* ~ t !.O~ t11n!, t→0.

For all other approximants, it holds in a weaker form, e.
f(t)2fnn22* (t).O(tn), t→0. We now would like to
demonstrate the possibility that suppressing~allowing! some
error in the limit of t→0 does not necessarily minimize~in-
crease! the error for the sought ‘‘nonsmall’’t values.

Consider the simple and generic functionf(t)5(1
2t)5/4 exhibiting a finite-time singularity~in its second-order
derivative! at tc51. The coefficients of its polynomial ex
pansion for smallt are

a051, a1521.25, a250.156, a350.039,

a450.017.

Using the same approach as above, we find the follow
predictions for the critical time:

tc2150.894 66,

tc3150.925 59, tc3250.935 71,

tc4150.947 88, tc4250.970 05, tc4350.956 63;

corresponding to the multipliers

M21~ tc21!50.794 19,

M31~ tc31!50.709 11, M32~ tc32!50.681 83,

M41~ tc41!50.628 18, M42~ tc42!50.560 84,

M43~ tc43!50.608 73.

In constrast, the critical times determined from the zeros
the ‘‘bare’’ polynomials are as follows:

t2050.901 61, t3050.934 74, t4050.951 18,

with the following multipliers

m2~ t02!50.7746, m3~ t03!50.6844, m4~ t04!50.630 33.

The value oftc42, obtained from the approximant that ha
the smallest multiplierM42(tc42) and thus the most stabl
4-6
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solution, gives the best estimate of the critical timetc . This
is notwithstanding the fact that the corresponding appro
mant does not satisfy the strict accuracy-through-order r
tionship. The approximant that does satisfy the accura
through-order relationship gives an estimatetc43 that is
further away from the true value. We also note that the b
estimate provided by Pade´ approximants technique applie
to the expansion off(t)5(12t)5/4 up to the fourth order
gives the predictiontc50.965, which is also inferior com
pared to our best estimate.

Let us consider another generic functionf(t)5(12t)3/4

which has now a finite-time-singularity in its first derivativ
at tc51. The coefficients of its polynomial expansion f
small t are

a051, a1520.75, a2520.094, a3520.039,

a4520.022.

In this case, we find that all multipliers are larger than 1:
convergence of the procedure cannot be guaranteed o
pecteda priori.

Nevertheless, even in such extremely unstable case
analysis of the table of predicted critical times turns out to
useful:

tc2151.1542,

tc3151.079 17, tc3251.090 91,

tc4151.017 94, tc4251.0377, tc4351.060 62.

Note that the valuetc41 ~again obtained from the approx
mant that does not satisfy accuracy-through-order relat
ship! appears in hindsight to be the best estimate. It is a
much better than values determined from the zeros of
‘‘bare’’ polynomials,

t2051.163 98, t3051.1087, t4051.081 29.

The best estimatetc51.047 of the technique of Pade´ ap-
proximants is inferior to our best estimate. The problem w
this example however is that we cannot rely on the multip
ers to guide us in choosing which prediction should be p
ferred.

V. NONLOCAL CONTROL THROUGH THE MOMENTS
OF THE FUNCTION TO PREDICT

Section II and our subsequent tests have shown that
control parameters provide a mean to improve the extrap
tion to the future by imposing some constraint on the
proximants. Up to now, we have used the constraint that
approximants must retrieve the ‘‘bare’’ polynomial expa
sions at small timest. This corresponds to constraints that a
local in time.

It is interesting and potentially useful to investigate t
possibility of using more global ‘‘nonperturbative’’ con
straints. A possible example is when, either froma priori
theoretical knowledge or from experimental or empiric
measurements, we get hold of the firstj 21 momentsm i ,i
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51,2, . . . ,j 21 of the sought functionf(t) in some interval
@0,T#,

m i5E
0

T

t i 21f~ t !dt. ~37!

Our notation means that, forj 52, we know only the zero
moment@mass or integralf(t) from 0 to T#, for j 53, we
know both the zeroth and first moment, etc.

Endowed with this knowledge of the firstj 21 moments,
we can condition the control parameterst1 ,t2 , . . . ,t j 21 de-
manding that the reconstructed approximants have exa
the right values of their moments,

E
0

T

f j* ~ t,t1 ,t2 , . . . ,t j 21!t i 21dt5m i . ~38!

For j 52, we have one equation fort1,

E
0

T

f2* ~ t,t1!dt5m0 .

For j 53, we obtain two equations fort1 andt2,

E
0

T

f3* ~ t,t1,t2!dt5m0 , E
0

T

f3* ~ t,t1,t2,!tdt5m1 .

For j 54, we have three equations fort1 , t2, andt3,

E
0

T

f4* ~ t,t1,t2 ,t3!dt5m0 , E
0

T

f4* ~ t,t1,t2,t3!tdt5m1 ,

E
0

T

f4* ~ t,t1,t2,t3!t2dt5m2 .

Based on these conditions, two different problems se
most natural. The first one is to construct an approxim
representation of the functionf(t) in the same interval@0,T#
where moments are given or measured. In the case wher
moments are obtained through some experimental proce
leading to some measurement errors, this first prob
amounts to filter out the noise in the measurement inte
@0,T#. The second problem that we shall address here c
sists in extrapolating to timest.T. The timeT usually cor-
responds to the last available measurement on the sy
history. The time horizont for the ‘‘prediction’’ depends on
the specificity of the system and is usually taken proportio
to the sampling time between two measurements, thatt
2T!T. Actual calculations are often performed in a ‘‘mov
ing window.’’

Using the previous example of the function 1/cos(t), let us
consider the following caseT5A2. This value is ‘‘natural’’
as it is the root of 11b1t2. Constraining the control param
eters by the knowledge of the moments in the inter
@0,A2#, we obtain the corresponding approximants. T
analyses of the zero of the inverse approximants give
following estimations for the critical times and the corr
sponding multipliers:
4-7
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tc2151.568 88, tc3251.570 77, tc4351.570 796,

M21~ tc21!50.643 88, M32~ tc32!50.636 78,

M43~ tc43!50.636 62.

Notice the extremely good quality of the convergence
both the critical times and of the multipliers.

It is also possible to use a hybrid approach, where so
control parameters are obtained from the agreement with
polynomial expansion at small timet, while the remaining
ones are determined from the conditions on the known m
ments. As an illustration, we show the fifth-order appro
mant

f5I* ~ t,t1 ,t2,t3 ,t4!5F11b1t2 expS b2

b1
t1t2 expH b3

b2
t2t2

3expFb4

b3
t3t2 expS b5

b4
t4t2D G J D G ,

~39!

wheret151 is conditioned by the polynomial expansion a
the other control parameters should be calculated from
system of equations

E
0

T

f5I* ~ t,1,t2 ,t3 ,t4!dt5m0 ,

E
0

T

f5I* ~ t,1,t2 ,t3 ,t4!tdt5m1 ,

E
0

T

f5I* ~ t,1,t2 ,t3 ,t4!t2dt5m2 . ~40!

This system can only be solved numerically.
Note that we do not even need to know the exact val

b3 , b4, andb5 of the polynomial expansion since they ca
be included in the corresponding controls. This results fr
the fact that the constraints on the moments overwhelm
initial information on the coefficients of the polynomial e
pansion. We findtc5451.570 796 in extremely good agree
ment with the exact critical timetc5p/251.570 796 3.

VI. CLASSIFICATION AND FORECASTING OF CRITICAL
TIMES BEYOND MEAN FIELD

We now use the formalism of Sec. II and relax the con
tion s→1` on the exponent of the algebraic transformatio
which amounted to impose the mean-field valuez521 of
the critical exponent. The control exponents will be deter-
mined from the optimization of the convergence and the
bility of the renormalization flow according the general pri
ciples developed by Yukalov and Gluzman@23–30#.

A. General procedure

Consider, as before, an expansion of an observablef(t)
in powers of a variablet ~time! given byfk(t)5(n50

k antn,
01613
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wherea051 without loss of generality by suitable norma
ization. The method of algebraic self-similar renormalizati
@23–25# gives the following general recurrence formula f
the approximant of orderk as a function of the expansio
fk21(t) up to orderk21:

fk* ~ t !5fk21~ t !F12
kak

s
tkfk21

k/s ~ t !G2s/k

[Ffk21
2k/s~ t !2

kak

s
tkG2s/k

, ~41!

where, in general,s5sk(t) depends on the approximatio
numberk and on the variablet. These approximants auto
matically agree with their corresponding polynomial expa
sions and the sole way to impose some control is to restrs
using some conditions of rather general nature such as
vergence of the sequence of approximants.

In the sequel, we assume that only the second-order
pansion is available. In order to determine the critical exp
nent z, we follow Yukalov and Gluzman@25# and construct
the two approximants available from the knowledge of t
two coefficientsa1 and a2. They can be readily obtaine
from the general formula~41!. The first-order approximant is
simply

C1* ~ t !5S 12
a1

s1
t D 2s1

. ~42!

Representingf2(t) asf2(t)511a1t@11(a2 /a1)t) and ap-
plying the general formula to the expression in brackets,
obtain the second-order approximant

C2* ~ t !511a1tS 12
a2

a1s2
t D 2s2

. ~43!

Let us assume further thats15s25s, wheres is the limiting
value of the control function of the algebraic transformati
at the critical point. It is apparent from the form of Eq.~41!
that s plays the role of the critical indexz. As it was ex-
plained in Ref.@25#, this is justified in the vicinity of a stable
fixed point.

The condition of maximum stability of the renormaliza
tion flow is equivalent to imposing that the differenceC2*
2C1* be a minimum with respect to the set of paramet
~the so-called minimal difference condition!. We discuss be-
low an application of the technique applied to direct seco
order expansions.

In the present work, we are interested in testing for
existence of a finite-time singularity or critical point. Look
ing for such an occurrence, we need to solve the minim
difference condition which amounts to look for the solutio
of the two equations in terms of the two variablestc ands,

C1* ~ tc ,s!50 and C2* ~ tc ,s!50. ~44!

The vanishing ofC1* given by Eq.~42! gives

tc5s/a1 . ~45!
4-8
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The second conditionC2* 50 with Eq. ~43! provides an es-
timates for the critical index. In terms of Froude paramet
Fd defined by Eq.~18!, the second condition of Eq.~44! can
be conveniently written as

11s~12Fd
21!2s50. ~46!

This givess5s(Fd) as a function of Froude number. In th
cases when this equation does not have a real solution
determine the control parameters ~which, we recall, is a
more general entity than the critical index! from the minimi-
zation ofC2* (tc ,s),

min
s

@11s~12Fd
21!2s#. ~47!

The Yukalov-Gluzman technique then confronts the t
approximantsC1* and C2* : after their difference is mini-
mized, it remains to decide which one of them is the b
resummed expression originating from the original pertur
tive expansion. Implicit in this approach is the concept t
the renormalization approach might not be fully converg
asymptotically but only locally. Such a decision can be ma
based on the analysis of the corresponding multipliers

M j~ t,s![F]C j* ~w,s!

]w G
w5P1(t,0)

, j 51,2,

yielding

M1~ t,s!5S 12
a1t

s D 2(11s)

, ~48!

M2~ t,s!5S 12
a2

a1s
t D 2sF11

a2

a1
tS 12

a2

a1s
t D 21G .

~49!

The most stable solution corresponding to the smal
uM j u should then be selected. We find, in general, thatC1*
has the smallest multiplier in the critical region, which ons
is determined by the conditionuM1(t,s)u!uM2(t,s)u, pro-
vided that a solution to Eq.~46! or Eq. ~47! exists. On the
other hand, we find thatC2* prevails in some ‘‘pseudocriti-
cal’’ regime when the first solutionC1* becomes unstable
One can make this selection process automatic by
weighting procedure advocated in Ref.@30# which has also
been used in Ref.@32#. The weighting procedure amounts
defining an average of the two approximants with weig
inversely proportional to their multipliers. The rational fo
this approach is that the inverse of the multipliers can
shown to play a role similar to the probability that the syst
visits the dynamical state described by the correspond
approximant. The resulting function is

C* ~ t,s!5
C1* ~ t,s!uM1~ t,s!u211C2* ~ t,s!uM2~ t,s!u21

uM1~ t,s!u211uM2~ t,s!u21
.

~50!
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Since we are interested in the physically meaningful c
when the critical timetc5s/a1 is positive ~it may be infi-
nite!, a modification is required whens/a1 is found negative
or simply when there is no real solution to Eq.~44!. We take
this situation as a signal that one should use the inve
function defined by Eq.~20! as the relevant expansion t
obtain the most stable scenario. The sought function is t
defined as the inverse of the weighted average for inve
renormalized approximant. The approximants and co
sponding multipliers are calculated using the parametersai ’s
@Eq. ~17!# changed intobi ’s @Eq. ~20!#. The final solution
reads

C* ~ t,s!

[C I* ~ t,s!21

5S C1I* ~ t,s!uM1I~ t,s!u211C2I* ~ t,s!uM2I~ t,s!u21

uM1I~ t,s!u211uM2I~ t,s!u21 D 21

.

~51!

B. Negative velocitya1Ë0 „downward trend…

Using the general procedure of Sec. VI A, we now pres
the corresponding classification of the different possible
gimes.

1. Negative acceleration a2Ë0

In this situation, the inverse function has always a sing
larity. This corresponds for the direct observable function
vanish in finite time ~critical regime I! at tc5s(Fd)/a1,
wheres(Fd) is the negative solution of Eq.~46!. Both ap-
proximantsC1* and C2* contribute to the expression~51!,
andC2* progressively dominates as time approachestc .

Solution C2* contribute to the average~50! more than
C1* , becauseuM2u is always smaller thanuM1u. As the mul-
tiplier of C1* (t) eventually blows up to infinity at
tc , C2* (t) ends by dominating the behavior ofC* (t).

The asymptotic behavior of the average close totc is de-
termined byC2* and is characterized by exponentz51, not-
withstanding the fact that the control exponents is fractional.
This corresponds to the situation where the observable g
to zero linearly in time.

2. Positive moderate acceleration 0Ëa2Ëa1
2ÕF0, F0ËFd where

F0Ä(1ÀeÀ1Õe)À1

In this region of parameterF05(12e21/e)2153.249
,Fd , the observable still goes to zero in finite time~critical
regime I!. The time tc at which the observable vanishes
given by the same formula as in Sec. VI B 1. This soluti
exists as long as there is a solutions(Fd) to Eq. ~46!. When
Fd becomes too small, Eq.~46! does not possess a solutio
and this corresponds to the critical regime II discussed in
following section. The boundary between these two regim
occurs at the Froude valueF0 determined by adding the con
dition
4-9
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]~C2* ~s/a1 ,s!!

]s
50 ~52!

to the general equationC2* (s/a1 ,s)50. The minimum, so-
lution of Eq. ~52!, is located at

smin5
1

lnS Fd21

Fd
D , ~53!

and coincides with the zero ofC2* only for the specific value
of the Froude numberF0 thus determined by

F05~12e21/e!2153.249. ~54!

As Fd→`, Eq. ~46! can be solved exactly ands(Fd→`)
521, which gives the mean-field valuez51. In other
words, in the case ofFd→`, corresponding to a linear func
tion f(t)512ua1ut, when confronted with its expansion
our technique will reconstructf(t) exactly. Let us expand
Eq. ~35! around this exactly solvable limit in powers of
small parameter 1/Fd5y,

11s~12Fd
21!2s.11s1s2y1•••. ~55!

Then,

s5
1

2y
~211A124y!.212y1•••~y→0!. ~56!

This expression breaks down aroundFd54, and the numeri-
cal solution to the Eq.~46! should be considered in the re
gion of Froude parameterF<F0. Note thats(F0)52e.

SolutionC1* starts to contribute to the average~50! more
than C2* , as soon ast satisfy conditionuM1u!uM2u, as
shown in Fig. 1, which represents the dependence of the

FIG. 1. First-order approximantC1* @Eq. ~42!#, dashed line!,
second-order approximantC2* @Eq. ~43!, dotted line# and their
weighted average given by Eq.~50! ~continuous line! as a function
of time, for positive moderate acceleration 0,a2,a1

2/F0 , F0

,Fd , whereF05(12e21/e)21. The approximants and time var
ables are dimensionless.
01613
o

approximantsC1* (t) @Eq. ~42!# andC2* (t) @Eq. ~43!# and of
their weighted averageC* (t) given by Eq.~50!. As the mul-
tiplier of C1* (t) eventually vanishes attc , C1* (t) ends by
dominating the behavior ofC* (t) and the average demon
strates critical behavior with positive fractional exponenz
52s(Fd). Thus, in this region ofFd , as t goes totc , we
obtain a critical behavior with fractionals playing the role of
critical indexz. It means that the exponent is now differe
from 21 and is determined by the solution of Eq.~46!.

3. Strong positive acceleration a1
2ÕF0Ëa2, FdËF0

The critical regime~I! is now replaced by the critical re
gime ~II !, such that Eq.~46! does not possess a solution a
the control exponent and critical time are determined fr
the minimization of Eq.~47!, which gives

s5smin~Fd!5
1

lnS Fd21

Fd
D . ~57!

The critical index isz52smin(Fd), leading to a logarithmic
correction to the mean-field value. The critical time is giv
by

tc5
smin~Fd!

a1
. ~58!

Figure 2 shows the dependence of the two approxima
C1* (t) @Eq. ~42!# andC2* (t) @Eq. ~43!# and of their weighted
averageC* (t) given by Eq.~50!. The characteristic feature
is the existence of a minimum at timetmin of C2* (t) and,
therefore of a nonmonotonous behavior also of the aver
C* (t), with tmin given by

tmin52
a1

a2

smin

smin21
, ~59!

FIG. 2. Dependence of the two approximantsC1* (t) @Eq. ~42!,
dashed line# andC2* (t) @Eq. ~43!, dotted line# and of their weighted
averageC* (t) given by Eq.~50! ~continuous line! in the regime of
strong positive accelerationa1

2/F0,a2 , Fd,F0. The approximants
and time variables are dimensionless.
4-10
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corrected by the ratiosmin /(smin21) compared to the mean
field result~25! of Sec. III B 3. The value ofC2* (t) at tmin is

C2min* 512Fd@11L~Fd!#2[11L(Fd)]/L(Fd),

L~Fd!5 lnS Fd

Fd21D .

The trajectoryC* (t) shown in Fig. 2 is rather unusual sinc
after spending some time close to the local minimum o
noncritical branchC2* (t), the system suddenly breaks dow
towards the ‘‘critical’’ branchC1* (t), which then ends at a
critical point tc . This means that the critical behavior wit
exponentz52smin(Fd) has not disappeared yet. The dro
occurs at a crossover timet5tcros defined as the solution to
the equationuM1u'uM2u, with a magnitudeD5C2* (tcros)
2C1* (tcros). This regime is found for the Froude interv
F01,Fd,F0, whereF015(12e21)2151.582 is the solu-
tion of the equation

11
1

lnS F0121

F01
D 50, ~60!

corresponding to the Froude value at which the multip
M1(t,s) changes from stable (M1,1) to unstable (M1
.1) behavior. As the regime 1,Fd,F01 ~pseudocritical re-
gime I! sets in, the multiplierM1(t,s) becomes larger than 1
increases with time and diverges attc . Rather than converg
ing to theC1* (t) approximant, the weighted averageC* (t)
exhibits a fast change of direction to reachC2* (t) at tc , as
shown in Fig. 3. The critical branch has disappeared as
noncritical branchC2* dominates. The presence of the a
proximant scenarioC1* is felt only in the existence of som
oscillations accompanying theC2* scenario. This regime ex
ists for 1,Fd,F01.

For Fd,1 ~pseudocritical regime II!, the minimum of Eq.
~47! disappears and there is no solution either to Eq.~46! or

FIG. 3. Same as Fig. 2 in the regime 1,Fd,F01 ~pseudocritical
regime I!. Note that the weighted averageC* (t) exhibits a fast
change of direction to reachC2* (t) at tc .
01613
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to ~47! anymore. This implies that we should use the inve
expansion in terms of the coefficientsb1.0,b2,0(FI,0).
The corresponding control exponents is then obtained from
the condition

11s~12FI
21!2s50, ~61!

which has a negative solutions5s(FI) leading totc5s/b1
,0, which is not allowed. However, similarly to the prev
ous strategy to replace Eq.~46! by Eq. ~47!, we can look for
the solution that minimizes the left-hand side of Eq.~61!,
which givess→`. This corresponds to a pseudocritical r
gime which is reminiscent of the last phase of the previo
regime, but with formally infinitetc . In the limit s→`, we
obtain

C1I* ~ t !5exp~b1t !, M1I~ t !5exp~b1t !,

C2I* ~ t !511b1t expS b2

b1
t D , M2I~ t !5S 11

b2

b1
t DexpS b2

b1
t D .

Note thatC2I* (t) is qualitatively similar to the mean-field
solution of Sec. III, derived for the same region of para
eters. The multiplierM1I(t) is always larger than 1, which
implies that the scenarioC2I* always dominates in the
weighted average, although the contribution ofC1I* is re-
sponsible for the existence of an extra minimum in the t
jectory of C* given by expression~51!, as shown in Fig. 4.

C. Positive velocitya1Ì0 „upward trend…

1. Negative acceleration: a2Ë0

One can still define the control exponents from the con-
dition ~46!, but tc becomes negative which is undesirable.
in the preceding section, we turn to the next possibil
which is to use Eq.~47!, whose only solution iss→1`.
This solution turns out to minimize the difference betwe
the two approximant scenarios. This regime is the invers
of the pseudocritical regime II just presented above~only
with Fd,0 instead ofFI), as it is described by the following
solutions,

FIG. 4. Same as Fig. 2 forFd,1.
4-11
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C1* ~ t !5exp~a1t !, M1~ t !5exp~a1t !. ~62!

C2* ~ t !511a1t expS a2

a1
t D , M2~ t !5S 11

a2

a1
t DexpS a2

a1
t D .

~63!

Note thatC2* (t) is nothing but the mean-field solution o
Sec. III, derived for the same parameter region. The mu
plier M1(t) is found to be always larger than 1. Therefo
C2* dominates in the weighted average trajectoryC* Eq.
~50!. The contribution fromC1* induces splitting of the
mean-field maximum~at t52a1 /a2) as shown in Fig. 5.

2. Moderate positive acceleration:
0Ëa2Ë(F0À1)ÕF0a1

2; F0 Õ(F0À1)ËFd

In this case, although Eq.~46! has a solution fors,0, the
correspondingtc is negative. After inversion of the initia
series, this region of parameters is equivalent to 1,FI,F0.
This regime corresponds to the inverse of the critical reg
II described above and can be described similarly.

Consider first the region ofF01,FI,F0. There is a mini-
mum of the curveC2I* and the shape of the observab
(C I* )21 @see Eq.~51!# is significantly nonmonotonous, du
to contribution fromC2I* . The timetmin of the minimum of
(C2I* )21 ~maximum ofC2I* ) is given by

tmin52
b1

b2

smin

smin21
, ~64!

where

smin5
1

lnS FI21

FI
D ~65!

is the solution of the minimization

min
s

@11s~12FI
21!2s#.

FIG. 5. Same as Fig. 2 for a negative accelerationa2,0.
01613
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The maximum value is (C2I (min)* )21 where

C2I ~min!
* 5$12FI@11L~FI !#

2[11L(FI )]/L(FI )%,

L~FI !5 lnS FI

FI21D . ~66!

The trajectory has the same topology as shown in Fig
except that it is the inverse of the function shown in Fig.
The observable is predicted as the weighted average sce
given by Eq.~51! and is shown in Fig. 6. The ‘‘critical’’
branchC1I* shapes the weighted averageC I* as tc is ap-
proached. The weighted average scenario goes to infinit
finite time tc5smin /b1, with negativez5smin describing the
power-low divergence. In terms of the coefficientsai of the
polynomial expansion, this regime holds for (F01

21)/F01a1
2,a2,(F021)/F0a1

2, i.e., for F0 /(F021)
,Fd,F01/(F0121)@(F0121)/F0150.368, (F021)/F0
50.692]. These conditions are equivalent toF01,FI,F0.

As FI becomes smaller thanF01, the multiplierM1I(t,s)
changes from stable (M1I,1) to unstable (M1I.1). As a
consequence and similarly to the change from Fig. 2 to F
3, the weighted average scenario changes considerably
does not exhibit a critical divergence attc anymore. The
scenarioC1I* is felt only in the creation of a few oscillation
aroundC2I* . This regime holds for 1,FI,F01 and mirrors
the pseudocritical regime I previously described. In terms
initial coefficients, it corresponds to 0,a2,(F01)
21/F01a1

2.

3. Large positive acceleration:„F 0À1…ÕF 0a1
2Ëa2 , F IÌF 0

In terms of the inverse Froude number, this regime ho
for FI.F0. The observable goes to infinity in finite time at
critical time tc , which is determined from the condition tha
the inverse quantities cross zero. The corresponding con
exponents(FI) is the solution of

11s~12FI
21!2s50, ~67!

FIG. 6. Same as Fig. 2 in the regime of moderate positive
celeration: 0,a2,(F021)/F0 a1

2 ; F0 /(F021),Fd .
4-12
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CLASSIFICATION OF POSSIBLE FINITE-TIME . . . PHYSICAL REVIEW E 66, 016134 ~2002!
and

tc5s~FI !/b1 .

The existence of the finite-time singularity holds as lo
asFI.F0. This condition can be reexpressed in terms of
direct Froude number and givesFd,F0 /(F021)51.445.
This regime mirrors the critical regime I. Given a secon
order expansionf2(t).11ua1ut1ua1u2t2 of a simple pole
f(t)5(12ua1ut)21 ~with FI→`), our technique will in-
deed reconstruct it. The weighted average scen
C I* (t,s)21 goes to infinity in finite timetc , with negative
z5s(FI) describing the power-law divergence. In Fig. 7 w
demonstrate the dependence of the two approximantsC1* (t)
and C2* (t) and of their weighted averageC* (t) given by
Eq. ~51!.

VII. CONCLUDING REMARKS

Starting from a representation of the early time evolut
of a dynamical system in terms of the polynomial express
of some observablef(t) as a function of time, we have
investigated the conditions under which this early time d
namics may or may not lead to a finite-time singularity. T
corresponding classification has been performed from
point of view of the functional renormalization method
Yukalov and Gluzman@18–30#, with the purpose of identi-
fying the most stable scenarios, given the early time dyna
ics. The direct extension of this work is to test our pred
tions empirically, following the methodology of Ref.@16#
developed for a particular case.

Our classification of the singular and nonsingular beh
ior of functions f(t) has been performed on the basis
approximations by polynomials of second order int. This is
a priori justified by the nice properties of the exponent
approximantsF2* (t;t1) defined in Eq.~9!. However, one
could doubt the practical usefulness of low-order polynom
approximations if the series converge too slowly. An imp
tant question is thus whether the qualitative features of
exponential approximantsF2* (t;t1) obtained here could
not be changed completely by including a larger num

FIG. 7. Same as Fig. 2 in the regime (F021)/F0 a1
2,a2 ,

FI.F0.
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of coefficientsaj of the defining time series~1!, i.e., by
considering instead more complicated approxima
Fn* (t;t1 , . . . ,tn21) with higher values ofn. This question
is very difficult and cannot be answered in general withou
thorough study of the classifications including higher-ord
approximants. Such introduction of the higher-order terms
the expansion makes, however, any analytical classifica
very difficult and unnecessarily redundant. We expect
results obtained in the lowest second order to survive at l
in a general sense, because it captures the fundamental
petition between velocity~coefficient a1) and acceleration
~coefficienta2). Higher-order terms act only to renormaliz
these effective velocities and accelerations when not too
from the critical timetc . We thus expect that the existence
two broad classes of solutions, with and without finite-tim
singularity, will hold true for higher-order terms. Let us als
point out that, in many realistic problems, one does not h
the luxury of more than very few terms obtained by som
perturbation theory, In addition, most time series or data
accompanied by noise and only the lowest-order polynom
can be used in data fitting to avoid ill-conditioning and sp
rious solutions@16#. In such cases, techniques for acceler
ing the convergence based on a few terms of the expan
become vital.

In addition, we expect our method not to work for a
classes of functions. Exponential approximants of the ty
presented here will give reasonable results when applie
the reconstruction of continuous functions decaying ex
nentially at infinity. The numerical errors of such reconstru
tions appear to be much smaller for self-similar exponen
approximants than for the standard Pade´ approximants@36#.
On the other hand, nested exponentials become less a
cable to the case of functions that give coefficientsai ’s grow-
ing rapidly in absolute value with their orderi. In particular,
for functions with coefficients growing as fast as a factor
of their order, Pade´ approximants outperform superexpone
tials @34#. This case is particularly important, since it a
pears, for instance, in the expansions typical to many non
ear field theories. For instance, the Stieltjes function,f(t)
5*0

`exp(2u)/(11tu)du, which exemplifies such a behavio
has the coefficients of its Euler series@36#, diverging as a
factorial.

On the other hand, when one is concerned with the ca
lation of a critical point~or a finite-time singularity as stud
ied here!, it is an almost trivial result that exponential ap
proximants will reproduce exactly a power law of the ty
(tc2t)21 with exponent21, based on taking into accoun
any arbitrary orders of the expansion. Therefore, onea priori
expects that accurate calculations with such technique
possible for the critical-type functions which are not too f
from this ‘‘mean-field’’ finite-time singularity. Further in-
crease of accuracy can come at the expense of lifting
mean-field condition. Indeed, by easing the conditions on
control parameters, one can obtain a more general family
approximants, allowing for power-laws including constan
as in the asymptotic behavior studied in Ref.@35#. Such ap-
proximants were first suggested in Ref.@26# ~see also Ref.
@16#! for concrete applications!.
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