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Starting from a representation of the early time evolution of a dynamical system in terms of the polynomial
expression of some observalgét) as a function of the time variable in some intervat 0<T, we investigate
how to extrapolate/forecast in some optimal stability sense the future evolutig(tpfor time t>T. Using
the functional renormalization of Yukalov and Gluzman, we offer a general classification of the possible
regimes that can be defined based on the sole knowledge of the coefficients of a second-order polynomial
representation of the dynamics. In particular, we investigate the conditions for the occurrence of finite-time
singularities from the structure of the time series, and quantify the critical time and the functional nature of the
singularity when present. We also describe the regimes when a smooth extremum replaces the singularity and
determine its position and amplitude. This extends previous work§lpyuantifying the stability of the
functional renormalization method more accuraté®), introducing more global constraints in terms of mo-
ments, and3) going beyond the “mean-field” approximation.
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[. INTRODUCTION which the best and most reliable prediction should be ob-
tained from the use of the exact underlying model of the
Finite-time singularities in the dynamical equations useddynamical behaviof17]. The reason why this is not always
to describe natural systems are not always pathologies thii€ is that our method has shown that approximate solutions
should be thrown away or ignored, but may often betrayc@n P& more stable and more reliable when devised so as to
important useful information on the characteristic properties. aximize the criterion of stability with respect to perturba-
of the real system. Actually, spontaneous singularities in orons in the functional _spad[dG]. . o
dinary and partial differential equations are quite common Here, we extenpl this vv_ork by offering a ger!eral classifi-
and have been found in many well-established models Otfanon of the possible regimes that can be defined based on

natural systems, either at special points in space such as EHe sple knowledge of the coefficients Of. the polyno.m|al ex:
the Euler equations of inviscid fluidg,2], in the surface pansion of some obgervable as a function of the time vari-
curvature on the free surface of a conducting fluid in anab.le' We mostly restrict our analy5|s. to s_econd-order pOIyno'
electric field[3], in vortex collapse of systems of point vor- _mlals. AS a cons_eqtuence, ]frt'ﬁ cla_lss:ﬁca_tlon(;:?:n b% organized
tices[4], in the equations of general relativity coupled to a !l aunique way In terms of the single signéd Froude param-
mass field leading to the formation of black holé, in eter, ratio of the square of the ve!ocny to th_e acceleration. .
models of micro-organisms aggregating to form fruiting bod- Let us assume that Fhe dyngmmallbehaw.or of a system is
sampled to obtain a time serie&(t) in the interval G<t

ies [6], or in the more prosaic rotating coiffculer’s disk . : . ;
[7,8]. Some more complex examples are models of rupturegT' The question we address in this work is how to

and material failurg9—11], earthquake$12,13 and stock extrapolate/forecast in some optimal sense the future evolu-
market crashefl4, 15 ' ' tion of ¢(t) for time t>T. Beyond a simple extrapolation,

we ask whether it is possible to detect the germs of a finite-
time singularity from the structure of the time series, and
quantify the critical time and the functional nature of the
solely on the knowledge of the early time evolution of an si_ngularity when present. We also aim at classi_fying the re-
observable. From the parametrization of such early time evod'Mes wh_en a S_mOOth. gxtremum replaces the singularity and
lution in terms of a low-order polynomial of the time vari- &t détermining its position and amplitude.

able, the functional renormalization approach introduced by We §hal| work in thg framework of the funct|onal' renor-
Yukalov and Gluzman allows one to transform this po|yno_mallzat|on method, which constructs the extrapolationtfor

mial into a function that is asymptotically a power law. The = | from & resummation of the time series represented by a
value of the critical timet., conditionedon the assumption SIMPle polynomial expansion in powers of timewheret is
thatt, exists, can then be determined from the knowledge Of:ounted from the beginning of the recorded time series.

th.e coefficients qf the pplynomials. Referenté] hqs_ tested Il. SUMMARY OF THE FUNCTIONAL

with success this p_red|ct|on sche_me on a speqﬂc examplcl—;.zEl\lORMALIZATION APPROACH TO EXTRAPOLATION

and showed that this approach gives more precise and reli- OF TIMES SERIES

able predictions than through the use of the exact real power

law model. This is a rather surprising and paradoxical obser- The mathematical foundation of the functional renormal-
vation in contradiction with common wisdom according to ization approach used here can be found in earlier publica-

In a recent worK16], we have developed theoretical for-
mulas for the prediction of the singular time of systems
which area priori known to exhibit a critical behavior, based
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tions[18—30, which we summarize briefly. Let perturbation yi(@,5)=P;(t(¢,s),s). 3
theory (or some fitting procedujegive for the time series
¢(t) the succession of nonrandom approximatiohgt) One can then write the equation of evolution in the space of
wheren=0,1,2 . .. enumerates the order of the increasingly approximations as a function of the discrete “order time” in
precise approximations. The case of a polynomial expansiothe form of the functional self-similarity relation
will be discussed below,

Yi+p(@:9)=Yi(yp(¢,9),5). 4

n

dn(t)= E atk, n=0123.... (1) Expression(4) provides the necessary condition for the self-
k=0 consistency of the cascade of discrete approximations and

. . o o . -~ ensures the convergence Bf's. Expression(4) is nothing

This expansion(l) is, in principle, defined fot sufficiently but the application of the Caccioppoli-Banach principle for

sma!l and based on mformatlon about the “T“e series up t e existence of a stable fixed poisee, for instance, Chap.
the timeT. The expansion may have no meaning if continue VI of Ref. [31])

straightforwardly to the region of finite>T. The problem of At this stage, the efficiency of the algebraic transforma-

reconstruptlng the value of the functhn In some d!stant MO%ion can be checked by analyzing its stability. This is done
ment of time from the knowledge of its asymptotic expan-

sion ast—0 is called a renormalization or resummation for the sequence oP;(t,s)’s by calculating the so-called
: YIS ca ) lzatior d N |5cal multipliers (essentially proportional to the exponential
problem in theoretical physics. An analytical tool for the so-

lution of this problem, called algebraic self-similar renormal-Of Lyapunov exponents
ization, has been developed recerfth8—30 of which we

Yi(e,S
summarize the salient points useful for the present work. m;(t,s)= #ﬂ . (5)
It is convenient to remove the constant term and consider ¢ @e=P,(t,9)
the time seriep(t)= ¢(t) — ¢ represented by the sequence
of polynomial approximationg;(t),i=1,2,...n, When all|m;(t,s)[<1, the convergence of the sequerize
is guaranteed. To implement concretely the calculations, we
pi(t)=ast, py(t)=pi(t)+ast? ..., use the integral form of the self-similarity relati¢)
Pn(t) =Pn-1(t) +ant". 2 pr_de _
T, (6)
pi_1i(¢,S)

The algebraic self-similar renormalization starts by applying

to the approximation$2) a simple algebraic multiplication, where the cascade velocity #s(¢,S) =VYi(¢,S) —Vi_1(®,S)

thus defining a new sequencePi(t,s)=t°pj(t), i  andr is the minimal number of steps of the approximation
=1,2,...n, with 320.. Th_is transformation increases: the procedure needed to reach the fixed panft(t,s) of the
powers of the approximation sequendds and (2). This  approximation cascade. It is possible to finfi(t,s) explic-
formal manipulation effectively increases the order of thejyy and to perform an inverse algebraic transform after
expansion and provides a trick to effectively taking into con-hich the limits— = is to be taken. This completes the first
sideration more points from the system trajectory. In the firSjoop of the self-similar renormalization. This procedure can
part of the paper, we use the strongest form of this transfofpe repeated as many times as it is necessary to renormalize

mation corresponding to formally taking the limst—c. g polynomials that appear at the preceding steps. This is the
This will be shown to provide a representation of the renor,5in idea of the self-similar bootstr4@2].

malized function as an embedded set of exponentials associ- Completing this program, we come to the following se-

ated with a singularityp~ (t.—t)? with critical exponentz guence of self-similar exponential approximants:
imposed to have an absolute value equal to 1. This limit can

thus be considered as analogous to a “mean-field” regime p}k(t,Tl,Tz, ceTio1)

with the mean-field value of the critical exponent —1.

This can, for instance, represent the exponent of the deriva- a a;

tive of a quantity exhibiting a weak logarithmic divergence. =a1tex;{—trl- ' -exp{ i1 Tj‘lt) }

In the second part of the paper, we shall relax this limit and
determine both, and the index self-consistently. j=23,...n (7
The second step consists in considering the sequence of

transformed approximationB;(t,s), as a dynamical system and

in the discrete “order time” equal to the order

=0,1,...n—1 of the approximation. In order to keep the ¢} (t, 71,72, ...,7j_1)=p] (t,71,75, ..., 7j_1) + .

information on the system evolution with the real tité is (8)

convenient to introduce a new variahfeand define the so- o ] )

called expansion functiot(¢,s) from the equatiorP;(t,s) Explicitly, for the three first orders, we obtain

=a,t'"S= ¢, which givest(e,s)=(¢/a;)Y**9. We then

construct the discrete flow in the space of approximations P%(t,71)=agt exp(?trl
1

. . +ap, 9
indexed by the “order time” as
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. a, as and we easily find that;=1 andr,= 1—a§/(2a1a3).
¢3(t, 7, m2)=agtex a_ltTl ex a—thz +ag, (10) The problem of finding the control parameters is not too
complicated, since we are dealing formally with a nonlinear
but rather simple algebraic systems fds, i.e., the knowl-
. a, as a, : - ,
én(t, 71,70, T3)=atexp —tr exg —tr,expg —trs edge of the lowest-order’'s automatically gives us the ex-
& a a3 pression for ther in the next order. Using the anlytical pack-

+ay. (11)  ageMATHCAD 8, we have performed calculations up to the
tenth order of the perturbative expansion, without encounter-
Compared to previous work48—30, we introduce the fol- ing any serious diffuculties, except for quite lengthy analyti-
lowing innovation to improve on the selection of the stablecal expressions. However, for very large ordgrsome spe-
extrapolationgor scenarios In order to check whether the cial procedure, possibly combining numerical and analytical

sequence 0f7 (t, 71,72, ...,7 ;_1) really converges, in ad- approaches should be developed. _
dition to calculating the multipliersn;(t,s) defined by Eq. For eachj, we obtainj —1 self-similar approximants for
(5), we analyze the multipliert;(t, 73,75, ... ,7j_1) cor- the sought functiorfwhere all control parametersare now
responding specifically te* (t, 74,75, . ..,rj_1). For this, ~Known functions of the parameteas with 7,=1)
we construct again an approximation cascade as described St )
above and define IS AR

Mj(t,Tl,Tz, ...,Tj,l) ¢}'€2(t,1,7'2,1,...,]), (15)

_|opfeiiimas 7 a) 12 ¢ 1(tLmo, .. 7o), (16)
P .
¢ ¢=P,(1,0) which differ according to the number of control functions

being used. We can now construct a table of self-similar
Such a definition of multipliers allows us to compare theapproximants, varying both and the number of controls.
convergence of the expansion and of the renormalized exaccordingly, we can define the table of multipliers, varying
pansion, making clear the improvements that can be eXyothj and the number of controls. For instance, fer4, we

pecteda priori from the technique. If the values ®; are  have the following table of approximations:
systematically smaller than the correspondingin the re-

gion of t<T and the overall convergence properties are im- P (t) = ¢>J*(t,1),

proved, one can expect that the renormalized expressions

will work better than the original expansion &t T. P51 =03 (1,1,1), ¢3(t)=¢3(t,1,7,),
The final step consists in determining the control param-

etersry,7,, ... ,m—1, by expandingp (t, 71,75, ... ,7j_1) ¢ =3 (11,10,  drt) =5 (t,1,m5,1),

in the vicinity of t=0, and requiring that this expansion

agrees term by term with the initial ong(t) given by Eqg. Pi(t)= % (1,1,75,73).

(1). This corresponds to imposing the condition of “accuracy
through order,” which ensures that the approximants provide For all approximants other thag; ,_;(t), the accuracy-
a systematic approximation scheme: if the indeis in-  through-order relationship holds in a relaxed form, e.g.,
creased, the accuracy of the approximant to the expansion (1) — ¥, _,(t)=0(t"), t—0. In this case, we proceed
the vicinity of the expansion poirtt=0 also increases. This as described above but set the highest-order control param-
standard property is required in the construction, for in-eter equal to 1, while the other control parameters are deter-
stance, of the method of Padgproximations36] of the  mined from the expansion.
expansion(1). We stress that suppressitaglowing) an error in the limit
The accuracy-through-order relationship, which holds forgf t .0 does not necessarily mean that the error will be
the ¢, (t) approximant, means that¢(t)—&#,(t)  minimized(increasedifor the sought “nonsmall” values df
=0(t'*"), t—0. Technically, in order to obtain the cor- Sometimes, allowing a larger but still rather small error at
responding control parameters, we expand the approximaginishingly smalk’s may help in decreasing the error in the
near the origint—0 and equate the coefficients of the ex- critical region, since the trajectory described by the corre-
pansion to the correspponding coefficients of the polynomiagponding approximant may become more stable. The approx-
expressior(1). For example, fon=2 andn=3, in the cases imant that respects the standard form of the accuracy-

of the two simplest approximants, we obtaintasO, through-order relationship appears to be the best in the
“cosine” example presented below. But this is not necessar-
#3 (t,71)=ag+ast+a,mt*+0(t%), (13) ily the general case, as is demonstrated by the other ex-
amples also discussed below.
m1(2aza, 7o+ a57y) In order to select the scenarios for the extrapolation to the

B3 (t, 71, ) =ag+ast+a,mt’+ future from the initial time series, one needs to examine both
the properties of convergence of the sequences of multipliers

+0(t%), (149 M, and of approximantg* . The best scenario is the one that

2a,
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a a
1+ —t|exp —t|. (23
ai a

exhibits the best simultaneous convergence of both se-
guences. The resulting limiting fixed point read from the May(t)=
table of approximants should then be taken for the sought

extrapolation function. If there are more than one limiting The same expression gives the multiplier for the inversion
pOIﬂtS, the Sought funCtlon Sh0u|d be Constructed by tak|ngunction by Changing all the Coefﬁciem’s into bi’S, where

their average with weights inversely proportional to the mul-the h.’s are related to they’s via expressior(20).
tipliers (see Ref[30]). We now illustrate this general meth-

odology on specific examples for which a finite-time singu-
larity might exist.

B. Negative velocitya,;<0 (downward trend)

1. Negative accelerations<0

lll. CLASSIFICATION OF SINGULAR AND Working with positive observables, this case corresponds
NONSINGULAR BEHAVIORS BASED ON to the possibility that the observable vanishes in finite time.
SECOND-ORDER EXPANSIONS This zero-crossing occurs g4 given by
A. Definitions 1+F4Zgexd Z4]=0, (24)

Let us now consider the simplest nontrivial case allowing _ o
for the possible existence of a finite-time singularity, namelyWhere Zq=(az/a;)te;. The corresponding  multiplier

a second-order polynomial representation Ma2(tc2q) is larger than 1, signaling a possible problem with
the convergence of the functional renormalization method.
do(t)=1+at+a,t? (t—0) (17)  This may signal an instability in the time dynamics of the

time series close to the zero-crossing time.
of the initial time series. In the language of RE82], a, is
the velocity and 2, is the acceleration. The relative influ- 2. Moderate positive acceleration<ta,<ai/e
ence of the velocity and acceleration is quantified by the e gpservable goes again to zero in finite time. The time

so-called Froude numb¢g2] defined by t.; at which the observable vanishes is given again by Eq.

ai (24)._ Thel corresponding mulf[iplie“v’l 1(tgo1) IS now less than
Fy= - (18) 1, signaling a stable scenario.
2

3. Strong positive accelerationfkn<a2
Working with the “direct” series(17), the program described
in the preceding section provides the sought observablqh

which we nameb3 (t), equal to the resummed approximant

The acceleration is sufficiently positive to counterbalance
e negative trend and the observable goes through a mini-
*mum before rebounding upward. The tirg, at which the

minimum @}, ,.=1—F4/e is reached is given by

a
F(0)= (D) =1+ayt exp[—zt : (19)
aj; al
thin= — a (25
We will also study, when necessary, the inverse function 2
$2(t) of Po(t), This is a very stable situation since the multiplier is zero at
) the minimum. Our analysis suggests that the extrapolation to
G2 (t)=1ey(t)=1—ast+(—a+ant’+---=1+byt the future is the most credible for this situation in the down-

bt - - (20) ward trend case.

The corresponding Froude numter is C. Positive velocitya;>>0 (upward trend)
1. Negative acceleration: a0

F

2 2
EE: a Fa (,: - Fi ) (21) The observable increases up to a maximdnj,=1
b, a?-a, Fa—1 TR —F4/e and then decreases beyond it. The titpg, of the
maximum is given by
In cases when better convergence can be achieved by work-
ing with the “inverse” serieg20), the observable (t) will foo— a
be expressed through the approximant corresponding to the max Ay’

inverse series as follows: o S _ _
This is a very stable situation since the multipli, is less

b, )1 ( than 1 for arbitrary timé and is zero at the maximum.
— 22

by |

O3 (1) =[5y ()] 1=

1+bgt exp{

2. Positive acceleration

The convergence of our procedure is checked by estimat- This case requires the inversion of the time series, since
ing the value of the multiplier the multipliers of the direct series are always larger than 1:
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the expansion is not convergent and does not supply angn the basis of the quadratic polynomial expansion. The ex-
information on the real-axis singularities. The inversionpansion of the inverse ab,(t) reads

maps these two cases on the cases previously considered

with multipliers smaller than 1. In addition, the correspond- Gy () =1—1/22+ 1/24*+ - - .. (30)

ing series has alternating signs, suggesting that a finite-time

singularity is indeed present. As expected from our previous analysis in terms of the

stability of the renormalization flow quantified by the multi-
pliers, the position of the critical time is better estimated
The observable increases up to a maximum and then dgrom the zero ofg3, (t.p1) =0, which givest.,;=1.566 45,
creases beyond it. The ting,, of the maximum is given by  compared to the valugy,=1.592 45 suggested from the con-
dition ¢,q(to,0) =0. This last valuet,, is nothing but the
by ag prediction of the critical time from the “bare” polynomial

3. Moderate positive acceleration:<0a2<(e—lYe£

tma= ~ = a2—a, (26) expansion. We refer to Eq16) for the definition of%, ()
and ¢,q(t). This shows that using a control parameter,
and the value at the maximum is which ensures that the renormalized expansion retrieves the
N polynomial expansion, improves the prediction of the critical
Fir) ™ time.
D o= ( 1- ?) - (27

This solution is very stable and thus very credible as the v 'LL;YiE'éT('%\’il\(/)I'E:RTC':ENSCEELEC;E?GNHEE SOCF:{'IED'\I'E':R'OS
multiplier for ¢3,(t) is always smaller than 1 and vanishes i

. L . . . APPROXIMANTS
at the maximum. The original function is obtained by the

inversion®% (t)=[ ¢35, (t)]* [see also Eq(20)]. We now exploit the previous example of the function
N _ 1/cosf) described in Sec. Il D to illustrate how the concept
4. Large positive acceleration: telyed<a, or Fy<e/(e—1) of convergence of the approximants developed in Sec. Il can

There is an upward finite-time singularity ta, given by be used for an improved determination of the singularity. As

the zero of the inverted renormalized expansion, i.e., by th&/€ pointed out in Sec. Il, the approximant that respects the
solution of standard form of the accuracy-through-order relationship ap-

pears to be the best in the “cosine” example. In this section,
b3y (teo) =1+F;Z exd Z;]1=0, (28)  we also present two other models in which this is not the
case, suggesting the usefulness of our procedure based on the
where Ziztczl(az—arf)/al. The multiplier for ¢3,(t) is  minimization of multipliers.
smaller than 1, signaling the convergence of the theoretical
procedure for the inverse functions. Recall again that, in or-
der to return to the original function, the inversidry (t)
=[ ¢35, (1)1 should be performed, leading to a divergence
of the original observable at the point where its inverse

A. The cosine model

Higher-order expansions of the inverse of the function
1/cosf) are given by

Crosses zero. P31(1)=cbp ()= 1/720°%+ ... (b3=—1/720 (31)
D. Example and
Let us consider a function with known singular behavior
and compare the results obtained by means of self-similar ¢, (t)= ¢, (t)+1/4032@%+ ... (b,=1/40320.
approximations with the exact values. We consider the func- (32

tion 1/cosf) which was found 33] to describe the time evo-
lution of the crack length of a self-consistent model of dam-Tne corresponding higher-order approximants are
age and useL6] for prediction tests. Starting from=0, the
function 1/cos) possesses a singularity at 7/2~1.5708,
and its expansion up to second order in powers’akads DI (1)=(g% (1) 1=

1+ bltzex;{—tzex;<—rzt2 ] ,
b, b,
do(1)=1+1/2A%+5/24%+ - - -. (29 (33

Note that, since 1/cog(is an even function, the relevant jth

variable for the expansion is inde€dand our previous clas-

sification must be applied to the expansi@d) up to second b2

order int? (i.e., to fourth-ordett?). Fp=1— =
The corresponding Froude numberfig=1.2 and obeys 2bb3’

the condition KF,<e/(e—1), i.e., the preceding section

shows that one can anticipate a finite-time singularity, onlyand

(34)
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‘bﬁ(t)=[¢f§|(t)]_l multaneously both the order of the polynomial and the num-
ber of control parameters. The same observation holds for

_ P b, , bs the multipliersM. In contrast, the bare polynomials give a
=|1+Dbtex b_lt ex b_szt slower nonmonotonous convergence. This confirms the im-

provement brought by our scheme to obtain a better determi-

Xex;n(%r tz) ])_l (35) nation of the critical time .
by 2 ’ We note also that the best estiméte- 1.570 78 obtained
from the method of Padapproximant is inferior to our best
with estimate.
Ta=— bs (24b§b4b2+ 5b‘21— 12)§b§ B. _Example_s where relaxing the accuracy-through-prder
1ﬂ)1b2b4(b§—2b1b3) relation may improve the performance of the approximants

— 12b,b3b2) (36) As we discussed, the accuracy-through-order relationship
1Hsres holds for the approximanp?,_,(t), meaning simply that
As explained in Sec. Il, the control parametegsand 5 are

— Ah* ~ 1+n
determined from the condition that the expansion of the ap- A1) = dnp-1 (=0, 10,
proximants at small coincide with the perturbative expres- ror ail other approximants, it holds in a weaker form, e.g.,
sion of the initial polynomial representation. B(t)— ¢ H()=O(t"), t—0. We now would like to
nn— ! :

I_:or each approximant of a given different OTdef and .W'.thdemonstrate the possibility that suppresdialipwing) some
a given number of control parameters, we obtain a predlctlo%rror in the limit oft—0 does not necessarily minimizi-

for the position of the singularity obtained from the condition creasg the error for the sought “nonsmallt values.

of zero crossing of the inverse approximant. Let us compare : : : :
. o : ) Consider the simple and generic functiop(t)=(1
these values between them and with the critical time derlved_t)5/4 exhibiting a finite-time singularityin its second-order

I(r)(l)lrgwtize ;:eosrlrjizpondmg initial polynomial fit. We find the derivative at t.=1. The coefficients of its polynomial ex-
9 ' pansion for smalt are

te21=1.566 45, ag=1, a;=—125 a,=0.156, a,=0.039,

teg1=1.55134, tee=1.57067, a,=0.017.

tcar=1.55193, 1csp=1.57048,1¢43=1.57079, Using the same approach as above, we find the following

corresponding to the following multipliers defined by Eg. predictions for the critical time:

(12): topy=0.894 66,

Mai(tcz1) = 0.6484, te3:=0.92559, t.3,=0.93571,

Mai(tea) =0.68955, May(tesr) =0.63708, t.4;=0.94788, t.,=0.97005, t 45=0.95663:

Mai(tear) =0.687 43, Myaltea) =0.63772, corresponding to the multipliers

M 43(tc43) =0.63663. M Zl(tC21) =0.794 19,
The valued 1, tea1, tesn, tears teaz, andtess should be Mai(tear) =0.709 11, Ma(tes,)=0.68183,
compared with the values determined from the “bare” poly-
nomials M 41(tear) =0.628 18, M 4o(tcq0) =0.560 84,

tpo=1.59245, ty5=1.56991, t,=1.57082. Moao(torg) = 0.608 73
. . .

The_convergence of this _Iast sequence can t_)e _analyzed tﬁ){ constrast, the critical times determined from the zeros of
looking at the corresponding sequence of multipliegét,0) the “bare” polynomials are as follows:
defined by Eq(5), '

tyo=0.90161, t3,=0.93474, t,=0.95118,
My(toy) =0.577 35, my(tee) =0.639 85, 20 0 40

with the following multipliers

mz(toz) = 07746, mg(tog) = 06844, m4(t04) =0.63033.
Overall these results show indeed a good convergence for

tear,teaz @andteas by increasing the number of control param-  The value oft.,,, obtained from the approximant that has
eters and along the diagon@bq,t.3s.tcas Dy increasing si- the smallest multiplietM 4(t.4») and thus the most stable
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solution, gives the best estimate of the critical titpe This ~ =1,2, ... j—1 of the sought functiors(t) in some interval

is notwithstanding the fact that the corresponding approxif0,T],

mant does not satisfy the strict accuracy-through-order rela-

tionship. The approximant that does satisfy the accuracy- I

through-order relationship gives an estimdtg; that is Ki= fot ¢(ydt. (37

further away from the true value. We also note that the best

estimate provided by Padgpproximants technique applied Our notation means that, fgr=2, we know only the zero

to the expansion ofp(t)=(1—1t)%* up to the fourth order moment[mass or integratp(t) from 0 to T], for j=3, we

gives the predictiort,=0.965, which is also inferior com- know both the zeroth and first moment, etc.

pared to our best estimate. Endowed with this knowledge of the first-1 moments,
Let us consider another generic functigiit)=(1—1t)**  we can condition the control parametess 7y, . .. ,7j_1 de-

which has now a finite-time-singularity in its first derivative manding that the reconstructed approximants have exactly

att.=1. The coefficients of its polynomial expansion for the right values of their moments,

smallt are

T )
ap=1, a;=-0.75, a,=—0.094, az=—0.039, fo G (t, 71,72, ..ot T M=y (39

a,=~-0.022. For j=2, we have one equation foy,

In this case, we find that all multipliers are larger than 1: the T
convergenge_of the procedure cannot be guaranteed or ex- f ¢35 (t,7)dt= ug.
pecteda priori. 0

Nevertheless, even in such extremely unstable case, the _ _
analysis of the table of predicted critical times turns out to be=0r j =3, we obtain two equations far; and 7,
useful:

T T
tepy=1.1542, fo #3 (t,71,72)dt= wo, fo #3 (t, 7, m)tdt=pg.

tc1=1.07917, tc3,=1.09091, For j=4, we have three equations fef, 7,, and 73,

to1=1.01794, t.4=1.0377, t.4=1.06062. B T
. . . f ¢X(t171,7217'3)dt:,u0, f ¢Z(t,7’1’72173)tdt:,u,1,

Note that the valud.,; (again obtained from the approxi- 0 0

mant that does not satisfy accuracy-through-order relation-

ship) appears in hindsight to be the best estimate. It is also fT . 24t

much better than values determined from the zeros of the o Pa (L2 ) dt= .

“bare” polynomials,

Based on these conditions, two different problems seem

t20=1.16398, 13,=1.1087, 1,=1.08129. most natural. The first one is to construct an approximate

The best estimaté,=1.047 of the technique of Pad®- representation of the f_uncti(m(t) in the same intervdl0,T]
proximants is inferior to our best estimate. The problem WithWhere moments are given or measured. In the case where the

this example however is that we cannot rely on the multiloli_moments are obtained through some experimental procedure

ers to guide us in choosing which prediction should be preleadlng to some measurement errors, this first problem
ferred. amounts to filter out the noise in the measurement interval

[0,T]. The second problem that we shall address here con-
sists in extrapolating to times>T. The timeT usually cor-

V- NONLOCAL CONTROL THROUGH THE MOMENTS responds to the last available measurement on the system
OF THE FUNCTION TO PREDICT history. The time horizon for the “prediction” depends on

Section Il and our subsequent tests have shown that tH&e specificity of the system and is usually taken proportional
control parameters provide a mean to improve the extrapold0 the sampling time between two measurements, that is,
tion to the future by imposing some constraint on the ap_—T<T. Actual calculations are often performed in a “mov-
proximants. Up to now, we have used the constraint that thég window.”
approximants must retrieve the “bare” polynomial expan- Using the previous example of the function 1/¢pdét us
sions at small times This corresponds to constraints that areconsider the following casé= J2. This value is “natural”
local in time. as it is the root of # b;t?. Constraining the control param-

It is interesting and potentially useful to investigate theeters by the knowledge of the moments in the interval
possibility of using more global “nonperturbative” con- [0,/2], we obtain the corresponding approximants. The
straints. A possible example is when, either franpriori analyses of the zero of the inverse approximants give the
theoretical knowledge or from experimental or empiricalfollowing estimations for the critical times and the corre-
measurements, we get hold of the fifst1 momentsy; ,i sponding multipliers:
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tp1=1.56888, te3,=1.57077, te43=1.570796, whereay=1 without loss of generality by suitable normal-
ization. The method of algebraic self-similar renormalization
M21(tc21) =0.64388, Mgy(tc3,) =0.63678, [23-24 gives the following general recurrence formula for
the approximant of ordek as a function of the expansion
M 45(tca3)=0.636 62. ¢ 1(t) up to orderk—1:

Notice the extremely good quality of the convergence of . Kak | s sk
both the critical times and of the multipliers. (D= -1V 1= =y (1)

It is also possible to use a hybrid approach, where some
control parameters are obtained from the agreement with the
polynomial expansion at small time while the remaining
ones are determined from the conditions on the known mo-
ments. As an illustration, we show the fifth-order approxi-where, in generals=s,(t) depends on the approximation

—sl/k

K| 1)

—Kisppy Ny
d -1 (1) S t

mant numberk and on the variablé. These approximants auto-
matically agree with their corresponding polynomial expan-
HE (t )=|1+b,t2ex % {2 ex % {2 siqns and the solg_way to impose some control is to resrict
511 T1:72,73: 74 ! b, 't b, "2 using some conditions of rather general nature such as con-

vergence of the sequence of approximants.
X ex %T t2 ex;<%r tz) ) In the sequel, we assume that only the second-order ex-
by 2 b, * ' pansion is available. In order to determine the critical expo-
(39) nentz, we follow Yukalov and Gluzmai25] and construct
the two approximants available from the knowledge of the
wherer; =1 is conditioned by the polynomial expansion andtwo coefficientsa; and a,. They can be readily obtained
the other control parameters should be calculated from thBom the general formuléd1). The first-order approximant is
system of equations simply

T a; -8
jo ¢§I(t711T21T37T4)dt:/*L01 ‘I}I (t): 1- S_lt . (42)

T Representingp,(t) as¢,(t)=1+a;t[1+(a,/a,)t) and ap-
f b5 (1,1,75, 73, Ta)tdt=puq, plying the general formula to the expression in brackets, we
0 obtain the second-order approximant

-,

.
* 24+ —
fo ¢5(t, 1,75, 73, 74)t°dt= p5. (40) Vi (t)=1+at (43

a
1— 2t

a;Sy
This system can only be solved numerically. Let us assume further that=s,=s, wheresis the limiting

b Ngte thztbwe fdt% not tlaven r.]ele d to knpw the ex(tahct Value%alue of the control function of the algebraic transformation
3, D, ANAD5 OF € polynomial expansion SINCe they €an 4 yhe cyitical point. It is apparent from the form of E¢1)

be included in the corresponding controls. This results fro”{hat s plays the role of the critical index. As it was ex-
the fact that the constraints on the moments overwhelm thSIained in Ref[25], this is justified in the vicinity of a stable

initial information on the coefficients of the polynomial ex- fixed Do
: . i point.

pansion. We fdef"‘:;'.S?O 796 in extremely good agree- 14 condition of maximum stability of the renormaliza-
ment with the exact critical timg,= 7/2=1.570796 3. tion flow is equivalent to imposing that the differende;
—W¥7 be a minimum with respect to the set of parameters
(the so-called minimal difference conditioprWe discuss be-
low an application of the technique applied to direct second-

We now use the formalism of Sec. Il and relax the condi-Order expansions. . _ _
tion s— + % on the exponent of the algebraic transformation, N the present work, we are interested in testing for the
which amounted to impose the mean-field vaize—1 of ~ €Xistence of a finite-time singularity or critical point. Look-
the critical exponent. The control exponenwill be deter-  ing for such an occurrence, we need to solve the minimal
mined from the Optimization of the convergence and the Stadlﬁerence Condlt.lon V\{thh amounts to look for the solutions
bility of the renormalization flow according the general prin- ©f the two equations in terms of the two variabtesands,
ciples developed by Yukalov and Gluzmg28-30.

VI. CLASSIFICATION AND FORECASTING OF CRITICAL
TIMES BEYOND MEAN FIELD

¥i(te,s)=0 and W¥3(t;,s)=0. (44
A. General procedure The vanishing of#' given by Eq.(42) gives
Consider, as before, an expansion of an observaifte
in powers of a variablé (time) given by ¢, (t)=3=X_,ant", t.=sla;. (45)
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The second conditio’3 =0 with Eq. (43) provides an es- Since we are interested in the physically meaningful case
timatess for the critical index. In terms of Froude parameter when the critical timet.=s/a; is positive (it may be infi-
F4 defined by Eq(18), the second condition of E¢44) can  nite), a modification is required whesia, is found negative

be conveniently written as or simply when there is no real solution to Ed4). We take
this situation as a signal that one should use the inverse
1+s(1—Fg1)*S=O. (46)  function defined by Eq(20) as the relevant expansion to

obtain the most stable scenario. The sought function is then
This givess=s(F4) as a function of Froude number. In the defined as the inverse of the weighted average for inverse
cases when this equation does not have a real solution, wenormalized approximant. The approximants and corre-
determine the control parameter(which, we recall, is a sponding multipliers are calculated using the parametgss
more general entity than the critical indeikom the minimi-  [Eq. (17)] changed intob;’s [Eq. (20)]. The final solution
zation of W3 (t.,s), reads

min[1+s(1—Fg 1) %], (47 ()

—_\Ir* -1
The Yukalov-Gluzman technique then confronts the two =Vi(ts)
approximants¥'i and W% : after their difference is mini- % (4,5)| My (1,5)] -1+ W5 (,5)| My (t,5)] ")
mized, it remains to decide which one of them is the best ={ " ik A Gk
resummed expression originating from the original perturba- IMyi(t,9)[ 1+ My (t,9)[ 71

tive expansion. Implicit in this approach is the concept that (51)
the renormalization approach might not be fully convergent

asymptotically but only locally. Such a decision can be made

based on the analysis of the corresponding multipliers B. Negative velocitya; <0 (downward trend)
* Using the general procedure of Sec. VI A, we now present
IV (¢,) ) Iy . .
_ =17 i= the corresponding classification of the different possible re-
M(t,s) , =12, !
e gimes.
‘P:Pl(tvo)
yielding 1. Negative accelerationa<0
In this situation, the inverse function has always a singu-
a,t) ~(+9) larity. This corresponds for the direct observable function to
Mi(t,s)=|1-— , (48 vanish in finite time (critical regime ) at t,=s(Fg)/a;,
where s(F4) is the negative solution of Eq46). Both ap-
a |7 a a, |1 proximantsWy and W% contribute to the expressiofbl),
M(t,s)= ( 1- s t) 1+ a—t 1- s t) . andW¥3 progressively dominates as time approaches
! L L (49) Solution ¥} contribute to the averagés0) more than

W7}, becausgM,| is always smaller thafM 4. As the mul-

The most stable solution corresponding to the smallestiplier of W7(t) eventually blows up to infinity at
IM;| should then be selected. We find, in general, thgt  tc, W3(t) ends by dominating the behavior ¥* (t).
has the smallest multiplier in the critical region, which onset The asymptotic behavior of the average closé tes de-
is determined by the conditiofM (t,s)|<|M,(t,s)|, pro-  termined by¥3 and is characterized by exponert 1, not-
vided that a solution to Eq46) or Eq. (47) exists. On the withstanding the fact that the control exponei fractional.
other hand, we find tha¥’; prevails in some “pseudocriti- This corresponds to the situation where the observable goes
cal” regime when the first solutio’W? becomes unstable. o zero linearly in time.
One can make this selection process automatic by the
weighting procedure advocated in RE30] which has also 2. Positive moderate acceleration@,<a2/F,, Fy<Fqwhere
been used in Ref32]. The weighting procedure amounts to Fo=(1—e Y91
defining an average of the two approximants with weights In this region of parameteFy=(1— e €)~1=3 249

inversely proportional to their multipliers. The rational for . L
y prop P <F4, the observable still goes to zero in finite tirfezitical

this approach is that the inverse of the multipliers can be ™. . . . .
shown to play a role similar to the probability that the system":."glme ). The timet, at which the observable vanishes is

visits the dynamical state described by the corresponding'v.etn by }he samt(; fom_‘“'a as; Itr'] iec. tVII§ L. 4‘[5h|s\;Nsholutlon
approximant. The resulting function is xists as long as there is a solutisfF ) to Eq.(46). When

F4 becomes too small, Eq46) does not possess a solution
* 1 ek 1 and this corresponds to the critical regime Il discussed in the
V1(t9)[Ma(ts)[ 7+ W5 (1,5)[Ma(t,9)] _ following section. The boundary between these two regimes
IM(t,s)| " 1+|My(t,8)] 2 occurs at the Froude valug, determined by adding the con-
(50 dition

v*(t,s)=
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Approximants

FIG. 1. First-order approximarn®? [Eq. (42)], dashed ling
second-order approximan¥} [Eq. (43), dotted lind and their
weighted average given by EO) (continuous ling as a function
of time, for positive moderate acceleration<62<a§/Fo, Fo
<Fq4, whereFo=(1—e" )", The approximants and time vari-
ables are dimensionless.

A(W3(sla,,s))

P =0 (52)

to the general equatioW} (s/a;,s)=0. The minimum, so-
lution of Eq. (52), is located at
1
S TR
n F

(53

and coincides with the zero &5 only for the specific value
of the Froude numbef thus determined by

Fo=(1—e #)~1=3.249. (54)

As Fy—x, EqQ. (46) can be solved exactly ang(F — =)
=—1, which gives the mean-field value=1. In other
words, in the case df ;— <, corresponding to a linear func-
tion ¢(t)=1—]ay|t, when confronted with its expansion,
our technique will reconstrucp(t) exactly. Let us expand
Eq. (35) around this exactly solvable limit in powers of a
small parameter E =y,

1+s(1-Fgh) S=1+s+s?y+---. (55)

Then,

1
s=5y(~1F Vi-dy)=—1-y+---(y—0). (56

This expression breaks down arouRg= 4, and the numeri-
cal solution to the Eq(46) should be considered in the re-
gion of Froude parametdéf<F,. Note thats(Fy)= —e.
SolutionW? starts to contribute to the averaggd) more
than W3, as soon ag satisfy condition|M|<|M,|, as

shown in Fig. 1, which represents the dependence of the two

PHYSICAL REVIEW E56, 016134 (2002
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FIG. 2. Dependence of the two approximatt3 (t) [Eq. (42),
dashed lingand W% (t) [Eqg. (43), dotted ling and of their weighted
averagel* (t) given by Eq.(50) (continuous lingin the regime of
strong positive acceleratim{f/Fo< a,, Fq<F,. The approximants
and time variables are dimensionless.

approximantsty (t) [Eq. (42)] andW3 (t) [Eq. (43)] and of
their weighted averag# * (t) given by Eq.(50). As the mul-
tiplier of W7 (t) eventually vanishes at, W7 (t) ends by
dominating the behavior o¥* (t) and the average demon-
strates critical behavior with positive fractional exponent
=—3(Fy). Thus, in this region of4, ast goes tot., we
obtain a critical behavior with fractionalplaying the role of
critical indexz It means that the exponent is now different
from —1 and is determined by the solution of E¢6).

3. Strong positive accelerationfﬂ:0<a2, Fqo<Fq

The critical regime(l) is now replaced by the critical re-
gime (I, such that Eq(46) does not possess a solution and
the control exponent and critical time are determined from
the minimization of Eq(47), which gives

1
S=Smin(Fa)= NP (57)
l( Fq )

The critical index isz= — spn(Fg), leading to a logarithmic
correction to the mean-field value. The critical time is given

by

Smin(Fd)
tc—a—l. (58
Figure 2 shows the dependence of the two approximants
W (t) [Eq. (42] and W3 (t) [Eq. (43)] and of their weighted
averageW* (t) given by Eq.(50). The characteristic feature
is the existence of a minimum at tintg,;, of ¥3(t) and,
therefore of a nhonmonotonous behavior also of the average
W*(t), with t,,, given by

_ a1 Spin
a2 Smin— 1

: (59

tmin=
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FIG. 3. Same as Fig. 2 in the regime F 4<F; (pseudocritical FIG. 4. Same as Fig. 2 fdfq<1.
regime ). Note that the weighted average* (t) exhibits a fast
change of direction to reaclt} (t) att.. to (47) anymore. This implies that we should use the inverse

_ expansion in terms of the coefficiertts>0,b,<0(F,<0).
corrected by the ratis,,/(Snn—1) compared to the mean- The corresponding control exponesis then obtained from
field result(25) of Sec. 11l B 3. The value of?'; (t) att,,,is  the condition
=1-F[1+L(Fq)] MrLFalLFa), 1+s(1-F; 1) s=0, (61)

* .
2min

b,

b |

, My()= b

b
1+-2t
1

1+

Fq which has a negative solutis=s(F,) leading tot.=s/b,
L(Fd):m( F _1)- <0, which is not allowed. However, similarly to the previ-
d ous strategy to replace E@L6) by Eq.(47), we can look for
The trajectory®* (t) shown in Fig. 2 is rather unusual since the solution that minimizes the left-hand side of E1),
after spending some time close to the local minimum of avhich givess—c. This corresponds to a pseudocritical re-
noncritical branch¥3 (t), the system suddenly breaks down 9'M€ which is reminiscent of the last phase of the previous
towards the “critical” branchW¥7 (t), which then ends at a regime, but with formally infinitet... In the limit s—e, we
critical pointt.. This means that the critical behavior with obtain
exponentz= —s.,x(Fg) has not disappeared yet. The drop * 4y _
occurs at a crossover tinte=t;, s defined as the solution to V() =expbat), - Mu(t)=exabit),
the equationM1|~|M,|, with a magnitudeA =W¥3 (t.;os) b,
—W¥ (tero). This regime is found for the Froude interval W3 (t)=1+b;t exy{ exr{b—t>.
For<F4<Fo, whereFg=(1—e 1) 1=1.582 is the solu- !
tion of the equation Note thatW3,(t) is qualitatively similar to the mean-field
1 solution of Sec. lll, derived for the same region of param-
—— =0, (60) eters. The multiplieM ,(t) is always larger than 1, which
In Foim1 implies that the scenariol}, always dominates in the
Foi weighted average, although the contributiondf; is re-

, . .. sponsible for the existence of an extra minimum in the tra-
corresponding to the Froude value at which the muIt|pI|erjectory of W* given by expressiof1), as shown in Fig. 4.
M,(t,s) changes from stableM,<<1) to unstable 1,
>1) behavior. As the regime<lF4<F; (pseudocritical re- . )
gime |) sets in, the multiplieM ;(t,s) becomes larger than 1, C. Positive velocitya,>0 (upward trend)
increases with time and divergestat Rather than converg- 1. Negative acceleration: z<0
ing to theW7 (t) approximant, the weighted average® (t) One can still define the control exponentrom the con-
exhibits a fast change of direction to rea®} (t) attc, as jtion (46), butt. becomes negative which is undesirable. As
showr.wlln Fig. 3. The crltlc_al branch has disappeared as thg, the preceding section, we turn to the next possibility
noncritical branch®3 dominates. The presence of the ap-which is to use Eq(47), whose only solution is— + .
proximant scenariaP’y is felt only in the existence of some This solution turns out to minimize the difference between
oscillations accompanying th&% scenario. This regime ex- the two approximant scenarios. This regime is the inversion
ists for 1<F 4 <Fq;. of the pseudocritical regime Il just presented abdwaly

For F4<1 (pseudocritical regime )JJ the minimum of Eq.  with F4<0 instead of ), as it is described by the following
(47) disappears and there is no solution either to @) or  solutions,
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FIG. 5. Same as Fig. 2 for a negative acceleratigr 0. . ) ) i
FIG. 6. Same as Fig. 2 in the regime of moderate positive ac-

celeration: B<a,<(Fo—1)/Fy a%; Fol/(Fo—1)<Fyq.

Vi(t)=expast), My(t)=expait). (62
The maximum value isW¥3, )" where
ar ar ao
W (t =1+atex;{—t), My(t)= 1+—t)exp<—t). -
2 ! ap A0 ay ap S1min =11— F [ 1+ L(F))] HrHENLEDY,
(63)
F
Note thatW3(t) is nothing but the mean-field solution of L(F|)=|n(F _Il : (66)
|

Sec. lll, derived for the same parameter region. The multi-

pli*er Ma(t) is found to be always larger than 1. Therefore, rpg traiactory has the same topology as shown in Fig. 2
W5 dominates in the weighted average trajectdfyj EQ.  except that it is the inverse of the function shown in Fig. 2.
(50). The contribution fromW} induces splitting of the The observable is predicted as the weighted average scenario
mean-field maximuntatt=—a, /a,) as shown in Fig. 5. given by Eq.(51) and is shown in Fig. 6. The “critical”
N _ branch ¥y, shapes the weighted averadeg’ ast. is ap-
2. Moderate positive acceleration: proached. The weighted average scenario goes to infinity in
0<a,<(Fo—1¥Foay; Fol(Fo—1)<Fy finite time t.=s.,,/b;, With negativez= s, describing the
In this case, although E¢46) has a solution fos<0, the  power-low divergence. In terms of the coefficieatsof the
corresponding. is negative. After inversion of the initial polynomial expansion, this regime holds forFdg
series, this region of parameters is equivalenttoF}<F,.  —1)/Fpai<a,<(Fo—1)/FeaZ, i.e., for Fq/(Fo—1)
This regime corresponds to the inverse of the critical regime<Fy<Fq,/(Fg,— 1)[(Fo1—1)/F;=0.368, Fo—1)/Fg
Il described above and can be described similarly. =0.692]. These conditions are equivalentRg<F,<F,.
Consider first the region df;<F,<F. There is a mini- As F, becomes smaller thafy,, the multiplierM 4,(t,s)
mum of the curve¥3, and the shape of the observable changes from stableM;<1) to unstable 1,,>1). As a
(W) ! [see Eq.51)] is significantly nonmonotonous, due consequence and similarly to the change from Fig. 2 to Fig.

to contribution fromW¥3, . The timet,;, of the minimum of 3. the weighted average scenario changes considerably and
(¥%) "t (maximum of¥'%,) is given by does not exhibit a critical divergence &t anymore. The

scenario¥7, is felt only in the creation of a few oscillations
by Smin around¥3, . This regime holds for £ F,<F,; and mirrors
) (64)  the pseudocritical regime | previously described. In terms of

tmin=

by Spin— 1 0e o .
2 =min initial  coefficients, it corresponds to <0a,<(Fg)
2
where —1/Fya3.
1 3. Large positive acceleration(FO—1)/F0a§<a2, Fi>F,
Smin F—1 (65) In terms of the inverse Froude number, this regime holds
In = for Fy>F,. The observable goes to infinity in finite time at a

critical timet., which is determined from the condition that
the inverse quantities cross zero. The corresponding control

is the solution of the minimization . -
exponents(F,) is the solution of

min[1+s(1—F,; 1)~%].

S

1+s(1—F, )~ s=0, (67)
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ool 02 04 06 08 A0 92 14 e of coefficientsa; of the defining time serie¢l), i.e., by
considering instead more complicated approximants
a0 1. ®*(t;7, ...,7-1) With higher values oh. This question

is very difficult and cannot be answered in general without a
3 thorough study of the classifications including higher-order
600 i 600 approximants. Such introduction of the higher-order terms in
| the expansion makes, however, any analytical classification
very difficult and unnecessarily redundant. We expect the
results obtained in the lowest second order to survive at least
in a general sense, because it captures the fundamental com-
petition between velocitycoefficienta;) and acceleration
(coefficienta,). Higher-order terms act only to renormalize
these effective velocities and accelerations when not too far
from the critical timet. . We thus expect that the existence of
two broad classes of solutions, with and without finite-time
FIG. 7. Same as Fig. 2 in the regim&d—1)/Foai<ap,  singularity, will hold true for higher-order terms. Let us also

400

Approximants

200

t

Fi>Fo. point out that, in many realistic problems, one does not have
d the luxury of more than very few terms obtained by some
an perturbation theory, In addition, most time series or data are
te=s(F,)/b. accompanied by noise and only the lowest-order polynomials

can be used in data fitting to avoid ill-conditioning and spu-

The existence of the finite-time singularity holds as longrious solutiond 16]. In such cases, techniques for accelerat-
asF,>F. This condition can be reexpressed in terms of theing the convergence based on a few terms of the expansion
direct Froude number and gives;<Fq/(Fg—1)=1.445. become vital.
This regime mirrors the critical regime I. Given a second- |n addition, we expect our method not to work for all
order expansionp,(t)=1+|a,|t+|a;|*t* of a simple pole classes of functions. Exponential approximants of the type
#(t)=(1—|ay|t) ! (with F,—), our technique will in- presented here will give reasonable results when applied to
deed reconstruct it. The weighted average scenariche reconstruction of continuous functions decaying expo-
W (t,s) "1 goes to infinity in finite timet,, with negative nentially at infinity. The numerical errors of such reconstruc-
z=3(F,) describing the power-law divergence. In Fig. 7 we tions appear to be much smaller for self-similar exponential
demonstrate the dependence of the two approxim#ijtg) approximants than for the standard Pagigroximantg36).
and W3 (t) and of their weighted averagé*(t) given by  On the other hand, nested exponentials become less appli-
Eq. (52). cable to the case of functions that give coefficients grow-
ing rapidly in absolute value with their orderin particular,
for functions with coefficients growing as fast as a factorial
of their order, Padapproximants outperform superexponen-

Starting from a representation of the early time evolutiontials [34]. This case is particularly important, since it ap-
of a dynamical system in terms of the polynomial expressiorpears, for instance, in the expansions typical to many nonlin-
of some observables(t) as a function of time, we have ear field theories. For instance, the Stieltjes functigit)
investigated the conditions under which this early time dy-= [7exp(—u)/(1+tu)du, which exemplifies such a behavior,
namics may or may not lead to a finite-time singularity. Thehas the coefficients of its Euler serigd6], diverging as a
corresponding classification has been performed from thectorial.
point of view of the functional renormalization method of  On the other hand, when one is concerned with the calcu-
Yukalov and Gluzmari18-30, with the purpose of identi- |ation of a critical point(or a finite-time singularity as stud-
fying the most stable scenarios, given the early time dynamied herg, it is an almost trivial result that exponential ap-
ics. The direct extension of this work is to test our predic-proximants will reproduce exactly a power law of the type
tions empirically, following the methodology of Ref16]  (t.—t)~* with exponent—1, based on taking into account
developed for a particular case. any arbitrary orders of the expansion. Therefore, apeiori

Our classification of the singular and nonsingular behavexpects that accurate calculations with such technique are
ior of functions ¢(t) has been performed on the basis of possible for the critical-type functions which are not too far
approximations by polynomials of second ordet.iThis is  from this “mean-field” finite-time singularity. Further in-
a priori justified by the nice properties of the exponential crease of accuracy can come at the expense of lifting the
approximants®3 (t; 7;) defined in Eq.(9). However, one mean-field condition. Indeed, by easing the conditions on the
could doubt the practical usefulness of low-order polynomialcontrol parametes, one can obtain a more general family of
approximations if the series converge too slowly. An impor-approximants, allowing for power-laws including constants,
tant question is thus whether the qualitative features of thes in the asymptotic behavior studied in Ré&b]. Such ap-
exponential approximantsb? (t;r,) obtained here could proximants were first suggested in REZ6] (see also Ref.
not be changed completely by including a larger numbef16]) for concrete applications

VII. CONCLUDING REMARKS
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